

16th Swiss and Liechtenstein Chemistry Olympiad

First round

Multiple Choice	:	32 Questions
Duration	:	40 minutes
Questions	:	Multiple Choice Questions (MC)Multiple True False Questions (MTF)
Grading	:	Each fully correct reply is worth one point.
Aids and tools	:	All aids are allowed (Text books, calculators, periodic table, etc.). However, the test has to be solved on one's own without the help from others.
Participation conditions (according to IChO)	:	 born on or after 1st of Juli 2002 not yet immatriculated at an university attending a Swiss school (now or previously)
Due date	:	9^{th} of October 2021
Due address	:	Wissenschafts-Olympiade Universität Bern Hochschulstrasse 6 3012 Bern

Online participation is recommended. For the print version of the exams and details regarding participation on paper, see chemistry.olympiad.ch/en/teachers

Good luck!

Question 1 (MC):

What is the pH of an aqueous solution of $0.67 \frac{mol}{L}$ HCl (pK_a(HCl) $\simeq -6$)?

A 0.67

- B 13.1
- C 0.17
- D -6.3
- E 0.63

Question 2 (MC):

Calculate the pH of an aqueous solution of 2 $\frac{mol}{L}$ acetic acid (pK_a(AcOH) = 4.76).

A 2.38

- B 4.76
- C 2.46
- D 2.23
- E -3.0

Question 3 (MC):

Determine the oxidation number of all atoms in the following molecule: HCO_3^-

A H: +1 / C: -4 / O: +2, 0 B H: +1 / C: +2 / O: -1 C H: +1 / C: +4 / O: -2 D H: -1 / C: -4 / O: +2, 0 E H: -1 / C: +2 / O: -2

Question 4 (MC):

Which is the right order representing the strength of the following acids: HBr, HI, HCl, HF?

A HI > HBr > HCl > HF B HI > HCl > HF > HBr C HCl > HF > HBr > HI D HF > HCl > HI > HBr E HF > HCl > HBr > HI

Question 5 (MC):

Determine the right stoichiometric coefficients for the following reaction:

 $n \operatorname{Al}(OH)_3 + m \operatorname{H}_2 SO_4 \rightarrow x \operatorname{Al}_2(SO_4)_3 + y \operatorname{H}_2 O$

A n: 2, m: 3, x: 1, y: 6 B n: 2, m: 6, x: 2, y: 6 C n: 1, m: 3, x: 1, y: 3 D n: 1, m: 6, x: 1, y: 3 E n: 2, m: 6, x: 1, y: 3

Question 6 (MC):

Determine the right stoichiometric coefficients for the following reaction:

 $a \operatorname{Na}_{2}[\operatorname{B}_{4}\operatorname{O}_{7}] + b \operatorname{SiO}_{2} + c \operatorname{Na} + d \operatorname{H}_{2} \rightarrow x \operatorname{NaBH}_{4} + y \operatorname{Na}_{2}\operatorname{SiO}_{3}$

A a: 2 , b: 7 , c: 16 , d: 16 B a: 1 , b: 7 , c: 16 , d: 8 C a: 1 , b: 7 , c: 16 , d: 16 D x: 8 , y: 1 E x: 1 , y: 1

Question 7 (MC):

How much PbSO₄ (K_L = $2.53 \cdot 10^{-8} \frac{mol^2}{L^2}$) can be dissolved in 2L of water?

A 0.096 g B 0.068 g C 0.048 g D $5.06 \cdot 10^{-6}$ mol E $5.06 \cdot 10^{-8}$ mol

Question 8 (MC):

The yield of the following reaction is 20 % at 2 bars and 290 K, what happens if we increase the pressure? $CO_2 + KOH \rightleftharpoons KHCO_3$

- A The yield increases
- B The reaction goes to completion
- C Nothing
- D No Product at all is formed
- E The yield decreases

Question 9 (MC):

Calculate the volume of 0.4 moles of PH_3 at 31°C and 1.5 bars.

A 6.44 m^3

- $\mathsf{B}~148~\mathrm{m}^3$
- C 6.74 L
- D 0.69 L
- ${\sf E}~6.87\cdot 10^{-4}\,{\rm m}^3$

Question 10 (MC):

Calculate the energy of one photon at 460 nm.

A $4.32 \cdot 10^{-8} \text{ kJ}$ B $4.32 \cdot 10^{-8} \text{ J}$ C $9.13 \cdot 10^{-32} \text{ kJ}$ D $4.32 \cdot 10^{-19} \text{ J}$ E $3.04 \cdot 10^{-31} \text{ J}$

Question 11 (MC):

Which is the correct expression for the equilibrium constant of the following reaction? $4 \text{ NH}_3 + 5 \text{ O}_2 \rightleftharpoons 4 \text{ NO} + 6 \text{ H}_2\text{O}$

A
$$K = \frac{[NO]^{-4}[H_2O]^{-6}}{[NH_3]^4[O_2]^5}$$

B $K = \frac{[NO]^4[H_2O]^6}{[NH_3]^4[O_2]^5}$
C $K = \frac{[NH_3][O_2]}{[NO][H_2O]}$
D $K = \frac{[NH_3]^4[O_2]^5}{[NO]^4[H_2O]^6}$
E $K = \frac{[NO][H_2O]}{[NH_3][O_2]}$

Question 12 (MC):

Calculate the combustion enthalpy of propane (the reaction of C_3H_8 with oxygen): $\Delta_f H(CO_2) = -393.5 \text{ kJ/mol}$

 $\Delta_{\rm f} {\rm H}({\rm H}_2{\rm O}) =$ -241.8 kJ/mol $\Delta_{\rm f} {\rm H}({\rm C}_3{\rm H}_8) =$ -104.0 kJ/mol

A $\Delta_{c}H = -2043.7 \text{ kJ/mol}$ B $\Delta_{c}H = -2251.7 \text{ kJ/mol}$ C $\Delta_{c}H = -3288.7 \text{ J/mol}$ D $\Delta_{c}H = -3288.7 \text{ kJ/mol}$ E $\Delta_{c}H = 2043.7 \text{ kJ/mol}$

Question 13 (MC):

Which percentage of a 212 Bi sample has decayed after 5 min (t_{1/2} = 3633 s)?

A 0.1 % B 50 % C 5.6 % D 94 % E 9.1 %

Question 14 (MC):

Which is the correct equation for an alpha decay of $^{235}\mathrm{U?}$

A $^{235}U \rightarrow ^{231}Th^{2-} + {}^{4}He^{2+}$ B $^{235}U \rightarrow {}^{231}Th + {}^{4}He^{2+} + energy$

C $^{235}U \rightarrow ^{231}Th + ^{4}He$

D 235 U \rightarrow 231 Th +⁴He + energy

 $\mathsf{E}^{235}\mathsf{U} \rightarrow {}^{231}\mathsf{Th}^{2-} + {}^{4}\mathsf{He}^{2+} + \mathsf{energy}$

Question 15 (MC):

In which mode of radioactive decay does $^{99}\mathrm{Tc}$ decay into $^{99}\mathrm{Ru}^+?$

- A Alpha decay
- B Beta minus decay
- C Electron capture
- D Gamma decay
- E Beta plus decay

Question 16 (MC):

The transmission of a 0.3 molar solution of Sudan II (a red dye) is 0.2 at a wavelength of 500 nm and a width of 1 cm. Calculate the molar extinction coefficient at 500 nm.

A 2.33
$$\frac{L}{mol \cdot cm}$$

B 5.36 $\frac{L}{mol \cdot cm}$
C 0.67 $\frac{L}{mol \cdot cm}$
D 10.01 $\frac{L}{mol \cdot cm}$
E 0.0067 $\frac{L}{mol \cdot cm}$

Question 17 (MC):

The combustion of one mole of an organic substance with 4.5 equivalents of oxygen produces solely 72 g H₂O and 132 g CO₂. What is the sum formula of the organic substance?

A C_4H_6O

- $B C_3H_8O_2$
- $C C_3H_8O$
- $D C_4H_8O_2$
- $\mathsf{E}\ \mathrm{C}_3\mathrm{H}_8$

Question 18 (MC):

Which of the following molecules contains a mass percentage of phosphorous of 66 % and a mass percentage of oxygen of 34 %?

- A PO_2
- $\mathsf{B}\ \mathrm{P}_4\mathrm{O}_{10}$
- $C P_4O_6$
- $\mathsf{D}\ \mathrm{P}_2\mathrm{O}_2$
- $\mathsf{E}\ \mathrm{P}_3\mathrm{O}_4$

Question 19 (MC):

According to IUPAC, what ist the name of the following compound?

- A 5-ethyl-2,4,7-trimethylnonane
- B 2,4-diethyl-5,7-dimethyloctane
- C 5-ethyl-3,6,8-trimethylnonane
- D 5,7-diethyl-2,4-dimethylnonane
- E 5,7-diethyl-2,4-dimethyloctane

Question 20 (MTF):

Which assignments are true?

- A II carboxylic acid
- B I ketone
- C V amide
- D IV nitrile
- E III ether

Question 21 (MC):

Which ones are the right stereoindicators of this compound?

- A 1R / 2R
- B 1S / 2S
- C 1R / 2S
- D This compound has no chiral centers.
- E 1S / 2R

Question 22 (MC):

How many isomers are composed of C_4H_7ON and contain the following motif? (Hint: As you can see in the figure, no double bonds to the nitrogen are allowed)

- A 17
- B 12
- C >19
- D 7
- E 3

Question 23 (MC):

What are the reaction types of the following reactions?

- A 1 Elimination / 2 Elimination / 3 – Substitution
- B 1 Substitution / 2 Elimination / 3 Addition
- C 1 Addition / 2 Elimination / 3 – Substitution
- D None of these options.
- E 1 Addition / 2 Substitution / 3 Elimination

Question 24 (MC):

Which is the correct order regarding the boiling points of these substances?

- A *n*-butane < propane < 1-butanol < *tert*-butyl alcohol < butyric acid
- B propane < n-butane < tert-butyl alcohol
 < 1-butanol < butyric acid</pre>
- C propane < *n*-butane < butyric acid < *tert*-butyl alcohol < 1-butanol
- D *n*-butane < propane < *tert*-butyl alcohol < 1-butanol < butyric acid
- E propane < *n*-butane < 1-butanol < *tert*-butyl alcohol < butyric acid

Question 25 (MC):

How many of the following statements are true (see Figure below)?

- For the energy E given to the system with boundaries $E_{A,A} < E < E_{A,B}$, the major product is A.
- $\label{eq:holescale} \bullet \ {\rm When \ the \ energy \ given \ to \ the \ system} \\ {\rm E}>>{\rm E}_{A,B} \ {\rm the \ major \ product \ is \ } A.$
- When the energy given to the system $E = E_{A,A}$ the major product is B.
- When the energy given to the system $E>>E_{A,B}$ the major product is B.
- A catalyst that favours the reaction to product B, lowers the free energy of product B.
- A catalyst does not change the free energy of product A.
- In general, a catalyst increases the activation energy.

- A 5
- Β4
- C 6
- D 3
- E 2

Question 26 (MTF):

Mark the correct statements (everything refers to the periodic table of elements).

- A The electronegativity increases from the bottom left to the upper right.
- B The size of atoms decreases from bottom to top.
- C The size of the atoms increases from the left to the right.
- D The ionisationation energy increases from upper right to bottom left.
- E The number of valence electrons increases from the left to right.

Question 27 (MC):

What reactant(s) is/are needed for this reaction?

- A CHBr₃
- B Br₂ / FeBr₃
- C HBr / H₂O
- D This reaction is impossible.
- E LiBr / NaBr (1:1)

Question 28 (MC):

Which of the following salts has the highest absolute lattice energy? (Hint: Consider the strenght of the ionic interaction)

- A LiF
- B NaBr
- C CaO
- D MgO
- E NaCl

Question 29 (MTF):

Which molecule(s) contain(s) a permanent dipole?

- A $(CH_3)_2CO$ (acetone)
- B CH_4
- $C CO_2$
- $D H_2O$
- $E CO_3^{2-}$

Question 30 (MC):

What is the name of $[Pt(NH_3)_4]Cl_2$?

- A Platinum(II) tetramino dichloride
- B Dichloride tetraaminoplatinum(II)
- C Dichlorotetraamonium platinum
- D Dichloro tetraaminoplatinum
- E Tetraaminoplatinum(II) chloride

Question 31 (MC):

What is the right geometry of IF_4^+ ?

- A II
- B IV
- C This molecule doesn't exist.
- DΙ
- E III

Question 32 (MC):

Which of these statements is true?

- A If the activation energy increases, the reaction deccalerates and less product is formed in equilibrium.
- B If the activation energy increases, the reaction accalerates and more product is formed in equilibrium.
- C The activation energy only has an effect on the product formation and not on the formation of the educt in an equilibrium.
- D The activation energy does not have an effect on the reaction rate and the product formation in equilibrium
- E The activation energy only has an effect on the reaction rate.