$16^{\text {th }}$ Swiss and Liechtenstein Chemistry Olympiad

First round

Multiple Choice	32 Questions
Duration	40 minutes
Questions	- Multiple Choice Questions (MC) - Multiple True False Questions (MTF)
Grading	Each fully correct reply is worth one point.
Aids and tools	All aids are allowed (Text books, calculators, periodic table, etc.). However, the test has to be solved on one's own without the help from others
Participation conditions (according to IChO)	- born on or after $1^{\text {st }}$ of Juli 2002 - not yet immatriculated at an university - attending a Swiss school (now or previously)
Due date	$9^{\text {th }}$ of October 2021
Due address	Wissenschafts-Olympiade Universität Bern Hochschulstrasse 6 3012 Bern

Good luck!

Question 1 (MC):

What is the pH of an aqueous solution of $0.67 \frac{m o l}{L} \mathrm{HCl}\left(\mathrm{pK}_{\mathrm{a}}(\mathrm{HCl}) \simeq-6\right)$?

A 0.67
B 13.1
C 0.17
D -6.3
E 0.63
Question 2 (MC):
Calculate the pH of an aqueous solution of $2 \frac{\text { mol }}{L}$ acetic acid $\left(\mathrm{pK}_{\mathrm{a}}(\mathrm{AcOH})=4.76\right)$.

A 2.38
B 4.76
C 2.46
D 2.23
E - 3.0
Question 3 (MC):
Determine the oxidation number of all atoms in the following molecule: $\mathrm{HCO}_{3}{ }^{-}$

A H: $+1 / \mathrm{C}:-4 / \mathrm{O}:+2,0$
B $\mathrm{H}:+1 / \mathrm{C}:+2 / \mathrm{O}:-1$
C $\mathrm{H}:+1 / \mathrm{C}:+4 / \mathrm{O}:-2$
D H: -1/C: $-4 / \mathrm{O}:+2,0$
E H: -1/C: +2 / O: -2
Question 4 (MC):
Which is the right order representing the strength of the following acids: $\mathrm{HBr}, \mathrm{HI}, \mathrm{HCl}, \mathrm{HF}$?
$A \mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
$\mathrm{BHI}>\mathrm{HCl}>\mathrm{HF}>\mathrm{HBr}$
C $\mathrm{HCl}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HI}$
D $\mathrm{HF}>\mathrm{HCl}>\mathrm{HI}>\mathrm{HBr}$
$\mathrm{E} \mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$

Question 5 (MC):

Determine the right stoichiometric coefficients for the following reaction:
$n \mathrm{Al}(\mathrm{OH})_{3}+m \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow x \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ $y \mathrm{H}_{2} \mathrm{O}$

A $\mathrm{n}: 2, \mathrm{~m}: 3, \mathrm{x}: 1, \mathrm{y}: 6$
B n: 2, m: 6, x: 2, y: 6
C $n: 1, m: 3, x: 1, y: 3$
D n: 1, m: 6, x: 1, y: 3
E n: $2, m: 6, x: 1, y: 3$
Question 6 (MC):
Determine the right stoichiometric coefficients for the following reaction:
$a \mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{7}\right]+b \mathrm{SiO}_{2}+c \mathrm{Na}+d \mathrm{H}_{2} \rightarrow$
$x \mathrm{NaBH}_{4}+y \mathrm{Na}_{2} \mathrm{SiO}_{3}$
A a: $2, \mathrm{~b}: 7, \mathrm{c}: 16$, $\mathrm{d}: 16$
B a: 1, b: 7, c: 16 , d: 8
C a: $1, \mathrm{~b}: 7, \mathrm{c}: 16$, $\mathrm{d}: 16$
D $x: 8, y: 1$
E $x: 1, y: 1$
Question 7 (MC):
How much $\mathrm{PbSO}_{4}\left(\mathrm{~K}_{\mathrm{L}}=2.53 \cdot 10^{-8} \frac{\text { mol }}{L^{2}}\right)$ can be dissolved in 2L of water?

A 0.096 g
B 0.068 g
C 0.048 g
D $5.06 \cdot 10^{-6} \mathrm{~mol}$
E $5.06 \cdot 10^{-8} \mathrm{~mol}$
Question 8 (MC):
The yield of the following reaction is 20% at 2 bars and 290 K , what happens if we increase the pressure?
$\mathrm{CO}_{2}+\mathrm{KOH} \rightleftarrows \mathrm{KHCO}_{3}$
A The yield increases
B The reaction goes to completion
C Nothing
D No Product at all is formed
E The yield decreases

Question 9 (MC):

Calculate the volume of 0.4 moles of PH_{3} at $31^{\circ} \mathrm{C}$ and 1.5 bars.

A $6.44 \mathrm{~m}^{3}$
B $148 \mathrm{~m}^{3}$
C 6.74 L
D 0.69 L
E $6.87 \cdot 10^{-4} \mathrm{~m}^{3}$
Question 10 (MC):
Calculate the energy of one photon at 460 nm .
A $4.32 \cdot 10^{-8} \mathrm{~kJ}$
B $4.32 \cdot 10^{-8} \mathrm{~J}$
C $9.13 \cdot 10^{-32} \mathrm{~kJ}$
D $4.32 \cdot 10^{-19} \mathrm{~J}$
E $3.04 \cdot 10^{-31} \mathrm{~J}$
Question 11 (MC):
Which is the correct expression for the equilibrium constant of the following reaction?
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightleftarrows 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
A $K=\frac{\left[\mathrm{NO}^{-4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{-6}\right.}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}$
B $K=\frac{\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}$
C $K=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
D $K=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
E $K=\frac{\left[\mathrm{NO}^{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{O}_{2}\right]}$
Question 12 (MC):
Calculate the combustion enthalpy of propane (the reaction of $\mathrm{C}_{3} \mathrm{H}_{8}$ with oxygen):
$\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{CO}_{2}\right)=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)=-241.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=-104.0 \mathrm{~kJ} / \mathrm{mol}$
A $\Delta_{\mathrm{c}} \mathrm{H}=-2043.7 \mathrm{~kJ} / \mathrm{mol}$
B $\Delta_{\mathrm{c}} \mathrm{H}=-2251.7 \mathrm{~kJ} / \mathrm{mol}$
C $\Delta_{\mathrm{c}} \mathrm{H}=-3288.7 \mathrm{~J} / \mathrm{mol}$
D $\Delta_{\mathrm{c}} \mathrm{H}=-3288.7 \mathrm{~kJ} / \mathrm{mol}$
E $\Delta_{\mathrm{c}} \mathrm{H}=2043.7 \mathrm{~kJ} / \mathrm{mol}$

Question 13 (MC):

Which percentage of a ${ }^{212} \mathrm{Bi}$ sample has decayed after $5 \mathrm{~min}\left(\mathrm{t}_{1 / 2}=3633 \mathrm{~s}\right)$?

A 0.1%
B 50%
C 5.6%
D 94 \%
E 9.1%
Question 14 (MC):
Which is the correct equation for an alpha decay of ${ }^{235} \mathrm{U}$?

A ${ }^{235} \mathrm{U} \rightarrow{ }^{231} \mathrm{Th}^{2-}+{ }^{4} \mathrm{He}^{2+}$
B ${ }^{235} \mathrm{U} \rightarrow{ }^{231} \mathrm{Th}+{ }^{4} \mathrm{He}^{2+}+$ energy
C ${ }^{235} \mathrm{U} \rightarrow{ }^{231} \mathrm{Th}+{ }^{4} \mathrm{He}$
D ${ }^{235} \mathrm{U} \rightarrow{ }^{231} \mathrm{Th}+{ }^{4} \mathrm{He}+$ energy
E ${ }^{235} \mathrm{U} \rightarrow{ }^{231} \mathrm{Th}^{2-}+{ }^{4} \mathrm{He}^{2+}+$ energy

Question 15 (MC):

In which mode of radioactive decay does ${ }^{99} \mathrm{Tc}$ decay into ${ }^{99} \mathrm{Ru}^{+}$?

A Alpha decay
B Beta minus decay
C Electron capture
D Gamma decay
E Beta plus decay
Question 16 (MC):
The transmission of a 0.3 molar solution of Sudan II (a red dye) is 0.2 at a wavelength of 500 nm and a width of 1 cm . Calculate the molar extinction coefficient at 500 nm .

A $2.33 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~cm}}$
B $5.36 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~cm}}$
C $0.67 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~cm}}$
D $10.01 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~cm}}$
E $0.0067 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~cm}}$

Question 17 (MC):

The combustion of one mole of an organic substance with 4.5 equivalents of oxygen produces solely $72 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ and $132 \mathrm{~g} \mathrm{CO}_{2}$. What is the sum formula of the organic substance?

A $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$
B $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$
C $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
D $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
E $\mathrm{C}_{3} \mathrm{H}_{8}$
Question 18 (MC):
Which of the following molecules contains a mass percentage of phosphorous of 66% and a mass percentage of oxygen of 34% ?

A PO_{2}
B $\mathrm{P}_{4} \mathrm{O}_{10}$
C $\mathrm{P}_{4} \mathrm{O}_{6}$
D $\mathrm{P}_{2} \mathrm{O}_{2}$
E $\mathrm{P}_{3} \mathrm{O}_{4}$
Question 19 (MC):
According to IUPAC, what ist the name of the following compound?

A 5-ethyl-2,4,7-trimethylnonane
B 2,4-diethyl-5,7-dimethyloctane
C 5-ethyl-3,6,8-trimethylnonane
D 5,7-diethyl-2,4-dimethylnonane
E 5,7-diethyl-2,4-dimethyloctane

Question 20 (MTF):

Which assignments are true?

I

II

III

IV

V

A II carboxylic acid
B I ketone
C V amide
D IV nitrile
E III ether
Question 21 (MC):
Which ones are the right stereoindicators of this compound?

A $1 R / 2 R$
B $1 \mathrm{~S} / 2 \mathrm{~S}$
C 1 R / $2 S$
D This compound has no chiral centers.
E 1S / 2R

Question 22 (MC):

How many isomers are composed of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ON}$ and contain the following motif? (Hint: As you can see in the figure, no double bonds to the nitrogen are allowed)

A 17
B 12
C >19
D 7
E 3
Question 23 (MC):
What are the reaction types of the following reactions?

1

2

3

A 1 - Elimination / 2 - Elimination /
3 - Substitution
B 1 - Substitution / 2 - Elimination /
3 - Addition
C 1 - Addition / 2 - Elimination /
3 - Substitution
D None of these options.
E 1 - Addition / 2 - Substitution /
3 - Elimination

Question 24 (MC):

Which is the correct order regarding the boiling points of these substances?

A n-butane $<$ propane <1-butanol
$<$ tert-butyl alcohol < butyric acid
B propane $<n$-butane $<$ tert-butyl alcohol < 1-butanol < butyric acid
C propane $<n$-butane $<$ butyric acid
$<$ tert-butyl alcohol < 1-butanol
D n-butane < propane < tert-butyl alcohol < 1-butanol < butyric acid
E propane $<n$-butane <1-butanol
< tert-butyl alcohol < butyric acid

Question 25 (MC):

How many of the following statements are true (see Figure below)?

- For the energy E given to the system with boundaries $\mathrm{E}_{\mathrm{A}, \mathrm{A}}<\mathrm{E}<\mathrm{E}_{\mathrm{A}, \mathrm{B}}$, the major product is A .
- When the energy given to the system $\mathrm{E} \gg \mathrm{E}_{\mathrm{A}, \mathrm{B}}$ the major product is A .
- When the energy given to the system $\mathrm{E}=\mathrm{E}_{\mathrm{A}, \mathrm{A}}$ the major product is B .
- When the energy given to the system $\mathrm{E} \gg \mathrm{E}_{\mathrm{A}, \mathrm{B}}$ the major product is B .
- A catalyst that favours the reaction to product B, lowers the free energy of product B.
- A catalyst does not change the free energy of product A.
- In general, a catalyst increases the activation energy.

A 5
B 4
C 6
D 3
E 2

Question 26 (MTF):

Mark the correct statements (everything refers to the periodic table of elements).

A The electronegativity increases from the bottom left to the upper right.
B The size of atoms decreases from bottom to top.
C The size of the atoms increases from the left to the right.
D The ionisationation energy increases from upper right to bottom left.
E The number of valence electrons increases from the left to right.

Question 27 (MC):
What reactants) is/are needed for this reaction?

A CHBr_{3}
B $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$
C $\mathrm{HBr} / \mathrm{H}_{2} \mathrm{O}$
D This reaction is impossible.
E LiBer / aBr (1:1)
Question 28 (MC):
Which of the following salts has the highest absolute lattice energy? (Hint: Consider the strenght of the ionic interaction)

A RiF
B NaBr
C CaO
D MgO
E NaCl

Question 29 (MTF):

Which molecule(s) contain(s) a permanent dipole?

A $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ (acetone)
B CH_{4}
C CO_{2}
D $\mathrm{H}_{2} \mathrm{O}$
E CO ${ }^{2-}$
Question 30 (MC):
What is the name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$?
A Platinum(II) tetramino dichloride
B Dichloride tetraaminoplatinum(II)
C Dichlorotetraamonium platinum
D Dichloro tetraaminoplatinum
E Tetraaminoplatinum(II) chloride
Question 31 (MC):
What is the right geometry of $\mathrm{IF}_{4}{ }^{+}$?

I
II
III
IV

A II
B IV
C This molecule doesn't exist.
D I
E III

Question 32 (MC):

Which of these statements is true?
A If the activation energy increases, the reaction deccalerates and less product is formed in equilibrium.
B If the activation energy increases, the reaction accalerates and more product is formed in equilibrium.
C The activation energy only has an effect on the product formation and not on the formation of the educt in an equilibrium.
D The activation energy does not have an effect on the reaction rate and the product formation in equilibrium
E The activation energy only has an effect on the reaction rate.

