$17^{\text {th }}$ Swiss and Liechtenstein Chemistry Olympiad

First round

Multiple Choice	47 Questions
Duration	40 minutes
Questions	- Multiple Choice Questions (MC) - Multiple True False Questions (MTF)
Grading	Each fully correct reply is worth one point.
Aids and tools	All aids are allowed (Text books, calculators, periodic table, etc.). However, the test has to be solved on one's own without the help from others.
Participation conditions (according to IChO)	- born on or after $1^{\text {st }}$ of Juli 2003 - not yet immatriculated at an university attending a Swiss school (now or previously)
Due date	$14^{\text {th }}$ of October 2022
Due address	Wissenschafts-Olympiade Universität Bern Hochschulstrasse 6 3012 Bern

Online participation is recommended. For the print version of the exams and details regarding participation on paper, see chemistry.olympiad.ch/en/teachers

Good luck!

General Questions

Question 1 (MC):
What mass of CuSO_{4} is needed to produce 0.6 L of a $0.25 \mathrm{~mol} \mathrm{~L}{ }^{-1}$ solution of CuSO_{4} ?

A 9.91 g
B 23.94 g
C 47.88 g
D 95.77 g
Question 2 (MC):
Which element has the largest atomic radius?
A Li
B Be
C N
D 0
Question 3 (MC):
Which bond is the most polar?
A N-H
B O-H
C C-O
D C-H

Question 4 (MC):

Which electronic configuration of a groundstate corresponds to the most electropositive neutral element?

A $(3 s)^{1}$
B $(3 s)^{2}(3 p)^{3}$
C $(3 s)^{2}$
D $(3 s)^{2}(3 p)^{5}$
Question 5 (MC):
Which molecule does not contain 6 carbon atoms?

A 1,2-dichloro-3-methylpentane
B 2,2-dimethylpropanoic acid
C 4-methylpent-1-ene
D 1,2-dimethylcyclobutane

Question 6 (MC):

Which of these molecules contains an atom other than H for which the octet rule is not satisfied?

A $\mathrm{H}_{2} \mathrm{CO}_{3}$
B BF_{3}
C NH_{3}
D CBr_{4}
Question 7 (MC):
The pH value of a $10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$ solution of HCl is:

A Below 5
B Between 6 and 7
C About 9
D Above 10
Question 8 (MC):
What kind of reaction is the following equation?
$3 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
A Redox reaction
B Neutralisation
C Precipitation
D Condensation

Metathesis

When mixing equal parts of a $1.0 \mathrm{~mol}^{-1}$ solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and a $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, an insoluble product is formed and filtered off.

Question 9 (MTF):

The insoluble product contains:
A $\mathrm{PO}_{4}{ }^{3-}$
B Na^{+}
$\mathrm{CSO}_{4}{ }^{2-}$
D Fe^{3+}

Question 10 (MC):

The insoluble product is:
A Colourless to pale yellow
B Reddish brown in colour
C Green in colour
D A different colour
Question 11 (MTF):
The mother liquor contains:
A Fe ${ }^{3+}$
B $\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{C} \mathrm{SO}_{4}{ }^{2-}$
D Na^{+}
Question 12 (MC):
Evaporation of the mother liquor gives:
A A neutral solid
B An acidic substance
C An oxide
D A different substance

Titration

100 mL of a $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ formic acid solution is titrated with $0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$. For formic acid $p K_{a}=3.75$.

Question 13 (MC):

Formic acid has the sum formula:
A HCOOH
B $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
C HF
D None of the above
Question 14 (MC):
Formic acid is:
A A strong acid
B A strong base
C A weak acid
D None of the above

Question 15 (MC):
A $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of formic acid has a pH value of:

A 2.00
B 2.87
C 3.75
D None of the above
Question 16 (MC):
What is the reaction equation for this titration?
$\mathrm{A} \mathrm{HCOOH}+\mathrm{NaOH} \longrightarrow \mathrm{HCOONa}+\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{HCOOH}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{COO}+2 \mathrm{H}_{2} \mathrm{O}$
C $2 \mathrm{HCOOH}+\mathrm{NaOH} \longrightarrow \mathrm{NaH}(\mathrm{HCOO})_{2}+$ $\mathrm{H}_{2} \mathrm{O}$
D None of the above
Question 17 (MC):
What volume of $0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ is needed to get a final pH value of 3.75 ?

A 0 mL
B 50 mL
C 100 mL
D 25 mL
Question 18 (MC):
What is the concentration of final product in the solution when the acid is entirely neutralised (no excess of base)?

A $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$
B $0.02 \mathrm{~mol} \mathrm{~L}^{-1}$
C $0.0067 \mathrm{~mol} \mathrm{~L}^{-1}$
D None of the above
Question 19 (MC):
What is the pH of the solution when the acid is entirely neutralised (no excess of base)?

A 7.00
B 7.50
C 7.83
D None of the above

Question 20 (MC):

What is the pH obtained in the titration if 1.00 L of $0.01 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ is added to the initial formic acid solution?

A About 7
B About 12
C About 14
D None of the above

Chemistry of the Elements

Question 21 (MTF):
NO_{2} is an unusual molecule because:
A Its N atom does not respect the octet rule
B It is decomposed by water
C Its oxygen atom does not respect the octet rule
D It has an unpaired electron
Question 22 (MTF):
Which of the following substances make(s) a basic solution in water?

A $\mathrm{NH}_{4} \mathrm{Cl}$
B CaO
C AlCl_{3}
D $\mathrm{CH}_{3} \mathrm{COONa}$
Question 23 (MTF):
Which of the following substances can react with one another in aqueous solution?

A $\mathrm{H}_{2}+\mathrm{Cl}_{2}$
B $\mathrm{H}_{2}+\mathrm{Cu}^{2+}$
C $\mathrm{Ag}+\mathrm{Cu}^{2+}$
D $\mathrm{Zn}+\mathrm{Cu}^{2+}$
Question 24 (MTF):
During the electrolysis of CuCl_{2} in aqueous solution, which of the following happens?

A Hydrogen bubbles may form at the anode
B The metal is oxidised at the cathode
C Oxygen bubbles may form at the anode
D Chlorine bubbles may form at the anode

Question 25 (MC):

Black powder is a mixture of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$, charcoal (C), and sulfur (S). Its decomposition occurs according to the following reaction equation:
$2 \mathrm{KNO}_{3}+3 \mathrm{C}+\mathrm{S} \longrightarrow \mathrm{K}_{2} \mathrm{~S}+3 \mathrm{CO}_{2}+\mathrm{N}_{2}$
Which element undergoes the biggest change in oxidation state?

A Sulfur
B Potassium
C Carbon
D Nitrogen
Question 26 (MC):
Black powder is a mixture of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$, charcoal (C), and sulfur (S). Its decomposition occurs according to the following reaction equation:
$2 \mathrm{KNO}_{3}+3 \mathrm{C}+\mathrm{S} \longrightarrow \mathrm{K}_{2} \mathrm{~S}+3 \mathrm{CO}_{2}+\mathrm{N}_{2}$
What proportion of the initial mass is lost as a gas after the reaction has occurred?

A 60%
B 85\%
C 50%
D 100\%
Question 27 (MC):
Pyrite is a mineral with sum formula FeS_{2}, which burns in air to give iron(III) oxide and sulfur dioxide. What is the stoichiometric coefficient of O_{2} when the reaction equation is balanced?

A 5
B 8
C 11
D None of the above

Question 28 (MC):

Pyrite is a mineral with sum formula FeS_{2}, which burns in air to give iron(III) oxide and sulfur dioxide. How many moles of oxygen are required to fully combust 1.2 kg pyrite?

A 11 mol
B 27.5 mol
C 44 mol
D None of the above

Chemical Kinetics

Nitrogen(II) oxide (nitrogen monoxide) reacts with hydrogen according to the following reaction equation:
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The table below shows how the reaction rate changes when the concentration of the reactants is changed:

	$\begin{aligned} & 0 \\ & \dot{0} \\ & \stackrel{*}{0} \\ & i \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \stackrel{*}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$
	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \end{aligned}$	¢	8 3 0	8 3
	$\begin{aligned} & 8 \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{H}} \\ & \mathbf{0} \end{aligned}$	$\stackrel{8}{¢}$
$\begin{array}{cc} \dot{d} \\ \text { 品 } \\ \text { 苛 } \\ \hline \end{array}$	\sim	\sim	∞	-

Question 29 (MC):
What is the reaction order with respect to NO and with respect to H_{2} ?

A $1^{\text {st }}$ order for $\mathrm{NO}, 2^{\text {nd }}$ order for H_{2}
B $1^{\text {st }}$ order for both
C $2^{\text {nd }}$ order for $\mathrm{NO}, 1^{\text {st }}$ order for H_{2}
D $2^{\text {nd }}$ order for both
Question 30 (MC):
What is the rate law for this reaction?
A $v=k\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
B $v=k\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{H}_{2}\right]$
C $v=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$
D $v=k[\mathrm{NO}]\left[\mathrm{H}_{2} \mathrm{O}\right]$
Question 31 (MC):
What is the value of the reaction rate constant?

A $0.0506 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
B $2.53 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
C $0.0253 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
D $0.000253 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$

Solubility

Urinary (or renal) lithiasis is a condition characterised by the formation of small crystalline accretions called "kidney stones". These "stones" are mainly made up of calcium oxalate $\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)$ crystals. Knowing that the K_{S} value of this salt is $2.3^{*} 10^{-9}$:

Question 32 (MC):
What is the correct expression of the ion product of the species in solution?
$\mathrm{A} Q_{S}=\frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]}{\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
B $Q_{S}=\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right]$
C $Q_{S}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$
D $Q_{S}=\frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]}{\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right]}$

Question 33 (MC):

What is the minimum volume of aqueous solution required to solubilise a pure calcium oxalate kidney stone weighing 768 mg ?

A 125 L
B 1250 L
C 1.25 L
D 250 L

Question 34 (MC):

In a patient's urine sample, oxalate $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ is found in a concentration of $2.5^{*} 10^{-6} \mathrm{~mol}$ L^{-1} and calcium $\left(\mathrm{Ca}^{2+}\right)$ in a concentration of $5.0 * 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. Is there a risk of precipitation of a kidney stone in this patient?

A $Q_{S}>K_{S}$, so no
B $Q_{S}<K_{S}$, so yes
C $Q_{S}>K_{S}$, so yes
D $Q_{S}<K_{S}$, so no

Thermodynamics

The standard formation enthalpies for D -glucose, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are $-1271 \mathrm{~kJ} \mathrm{~mol}^{-1},-393.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

Question 35 (MC):

Which reaction equation correctly describes the combustion of D-glucose?

A $2 \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+23 \mathrm{O}_{2} \longrightarrow 8 \mathrm{H}_{2} \mathrm{O}+$ $20 \mathrm{CO}_{2}+2 \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
B $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
$\mathrm{C} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
D $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}+3 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Question 36 (MC):

What is the standard reaction enthalpy for the combustion of D-glucose?

A $-5081.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $-2540.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $-2805.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{D}+2540.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Question 37 (MC):

How is this reaction thermodynamically classified?

A Exothermic
B Endothermic
C Neither exo- nor endothermic
D Impossible to say based on the data
Question 38 (MC):
To what temperature can 500 g of water be heated, starting at $25^{\circ} \mathrm{C}$, by burning an excess of D-glucose with 2.00 L of pure oxygen at standard conditions, knowing that 70% of the reaction enthalpy is released as heat?

A $12.6^{\circ} \mathrm{C}$
B $37.6^{\circ} \mathrm{C}$
C $50^{\circ} \mathrm{C}$
D 298 K

Organic Chemistry
Question 39 (MC):
What is the correct absolute configuration of the asymmetric carbons in the following molecules?
1

A 1: $R, 2: R$ for $\mathrm{C}-\mathrm{NH}_{2}$ and R for $\mathrm{C}-\mathrm{CH}_{3}, 3$: R
B 1: R, 2: S for $\mathrm{C}-\mathrm{NH}_{2}$ and R for $\mathrm{C}-\mathrm{CH}_{3}, 3: S$
C 1: $S, 2: S$ for $\mathrm{C}-\mathrm{NH}_{2}$ and R for $\mathrm{C}-\mathrm{CH}_{3}, 3: R$
D 1: $S, 2: S$ for $\mathrm{C}-\mathrm{NH}_{2}$ and S for $\mathrm{C}-\mathrm{CH}_{3}, 3: S$

Question 40 (MTF):

Which of the following pairs of structures describes the same molecule?
A) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
B)

C)

C-
D)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\underset{\mathrm{H}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$

Question 41 (MC):
Which of the following structures shows the most stable radical?

A)

B)

C)

D)

Question 42 (MC):

Compared to its parent alkane, an alkyl radical contains:

A One carbon atom less
B One hydrogen atom less
C One carbon atom more
D One hydrogen atom more
Question 43 (MC):
When naming n-alkanes, the stem name indicates the number of:

A Hydrogen atoms
B Carbon atoms
C Oxygen atoms
D Bonds

Question 44 (MC):
Alcohols are characterized by the formal attachement of:

A An H atom to a hydrocarbon chain
B An HX group to a hydrocarbon chain
C An O atom to the hydrocarbon chain
D An OH group to a hydrocarbon chain
Question 45 (MC):
The general formula for amines is:
A $\mathrm{R}_{2}-\mathrm{CH}$
B R-COOH
C R-CH2
D $\mathrm{R}-\mathrm{NH}_{2}$
Question 46 (MC):
An alkane with the sum formula $\mathrm{C}_{7} \mathrm{H}_{16}$ is called:

A Butane
B Pentane
C Hexane
D Heptane
Question 47 (MC):
Ethers are formed by the attachment of:
A Two alkyl groups to the same oxygen atom
B Two alkyl groups to different oxygen atoms
C Three alkyl groups to one oxygen atom
D Four alkyl groups to one oxygen atom

