

INSTRUCTIONS

- Écrivez votre nom sur toutes les pages et numérotez-les!
- Vous avez trois heures pour résoudre les problèmes. Attendez le signal **START** pour commencer.
- Commencez une page neuve à chaque nouveau problème.
- Reportez tos vos calculs de manière lisible!
- À la fin de l'examen, mettez toutes vos feuilles dans l'enveloppe qui vous a été fournie. N'encollez pas l'enveloppe!
- Arrêtez complètement votre travail quand le signal **STOP** sera donné.
- Ne quittez votre place que quand on vous dira de le faire.
- On ne tiendra compte que des réponses écrites sur les feuilles de réponse.
- Ce test contient 20 pages.

Viel Erfolg!
Bonne chance!
Buona fortuna!
Good luck!

Français 2/20

CONSTANTES ET FORMULES

Nombre d'Avogadro	$N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$	Loi des gaz parfaits	pV = nRT
Constante des gaz parfaits	onstante des gaz parfaits $R = 8.314 \mathrm{J} \;\mathrm{mol}^{-1} \;\mathrm{K}^{-1}$		G = H - TS
Constante de Faraday	$F = 96485 \mathrm{C} \mathrm{mol}^{-1}$	$\Delta_r G^0 = -RT \cdot \ln(K)$	$=-nFE_{\mathrm{cellule}}^{0}$
Constante de Planck	$h = 6.626 \cdot 10^{-34} \text{ J s}$	Relation de Nernst	$E = E^0 + \frac{R \cdot T}{z \cdot F} \cdot \ln \left(\frac{c_{\text{ox}}}{c_{\text{réd}}} \right)$
Vitesse de la lumière	$c = 2.998 \cdot 10^8 \text{ m s}^{-1}$	Énergie d'un photon	$E = \frac{h \cdot c}{\lambda}$
Température	$0^{\circ}\text{C} = 273.15\text{K}$	Loi de Beer-Lambert	$A = \log\left(\frac{I_0}{I}\right) = \epsilon \cdot c \cdot L$

Les constantes d'équilibre sont toutes reportées à la concentration standard de $1 \mod \mathrm{dm}^{-3} = 1 \mod \mathrm{L}^{-1}$. Les gaz seront toujours considérés comme parfaits.

Français 3/20

Tableau périodique des éléments

)]	4.003	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	98	Rn	[212]	118	Og	[294]
		6	ഥ	19.00	17	IJ	35.45	35	Br	79.90	53	П	126.90	85	At	[210]	117	Ts	[294]
		8	0	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	[506]	116	Lv	[293]
		7	Z	14.01	15	Ь	30.97	33	As	74.92	51	Sb	121.76	83	Bi	208.98	115	Mc	[590]
		9	U	12.01	14	Si	28.09	32	g	72.63	20	Sn	118.71	82	Ъ	207.2	114	丘	[586]
		2	В	10.81	13	Αl	26.98	31	Ga	69.72	49	П	114.82	81	E	204.38	113	W.	[586]
								30	Zn	65.38	48	g	112.41	80	Hg	200.59	112	IJ	[582]
								59	Cn	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	[282]
								78	ï	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	[281]
								27	ප	58.93	45	Rh	102.91	22	Ir	192.22	109	Mt	[278]
								76	윤	55.85	4	Ru	101.07	9/	Os	190.23	108	Hs	[270]
								25	Mn	54.94	43	Tc	[86]	75	Re	186.21	107	Bh	[270]
								24	Ü	52.00	42	Mo	95.95	74	×	183.84	106	Sg	[569]
								23	>	50.94	41	NP	92.91	73	Та	180.95	105	Dp	[568]
								22	Ξ	47.87	40	Zr	91.22	72	Hf	178.49	104	Rf	[567]
								21	Sc	44.96	39	Y	88.91		57-71			89-103	
		4	Be	9.01	12	Mg	24.31	20	Ca	40.08	38	Sr	87.62	56	Ва	137.33	88	Ra	[526]
11	1.008	3	Ľ	6.94	11	Na	22.99	19	X	39.10	37	Rb	85.47	55	S	132.91	87	Fr	[223]
-		•																	

71	Ľ	174.97	103	Ľ	[596]
20	Yb	173.05	102	No	[528]
69	ПШ	168.93	101	РW	[258]
89	핌	167.26	100	Fm	[257]
29	H	164.93	66	Es	[252]
99	Dy	162.50	86	೮	[251]
65	Ţ	158.93	62	Bķ	[247]
64	РS	157.25	96	Cm	[247]
63	Eu	151.96	95	Am	[243]
62	Sm	150.36	94	Pu	[244]
61	Pm	[145]	93	Np	[237]
09	PN	140.24	92	ח	238.03
29	Pr	140.91	91	Pa	4 231.04
58	e	140.12		ΤΉ	232.04
22	Га	138.91	86	Ac	[227]

Français 4/20

FEUILLE DE POINTAGE

NE DOIT PAS ÊTRE REMPLIE PAR LE/LA PARTICIPANT/E

Nom du/de la participant/e : _____

Task	Title	Maximum Points	Achieved Points
1	Tendances Périodiques	12.0	
2	La Liaison Chimique	10.0	
3	Stoechiométrie	10.0	
4	Les Gaz	10.0	
5	L'équilibre Chimique	10.0	
6	Thermochimie	10.0	
7	Cinétique Chimique	10.0	
8	Acide-base	10.0	
9	Réduction-oxydation	10.0	
10	Electrochimie	10.0	
11	Solubilité	10.0	
12	Chimie organique	10.0	
Total		122.0	

Français 5/20

PROBLÈME 1 - TENDANCES PÉRIODIQUES

12.0 POINTS

Le tableau périodique est souvent considéré comme le "meilleur ami" des chimistes et des étudiants en chimie. Il contient des informations sur les masses atomiques et les symboles des éléments, mais il peut également être utilisé pour faire des prédictions sur la taille des atomes, l'électronégativité, les énergies d'ionisation, la liaison, la solubilité et la réactivité.

- 1.1 Considérez les données du modèle 1 de la page suivante.
 - a) Chaque élément a trois nombres listés sous lui. Quelle valeur parmi la 1ère, la 2ème ou la 3ème en partant du haut représente le rayon atomique?
 - b) Quelles sont les unités du rayon atomique?
 - c) Rédigez une phrase complète pour exprimer votre compréhension du rayon atomique. Remarque : vous ne pouvez pas utiliser le mot "rayon" dans votre définition.
- **1.2** En général, quelle est la tendance du rayon atomique lorsque l'on descend dans un groupe du modèle 1? Justifiez votre réponse à l'aide d'un exemple tiré d'un groupe.
- 1.3 En utilisant vos connaissances sur l'attraction coulombienne et la structure de l'atome, expliquez la tendance du rayon atomique que vous avez identifiée à la question 1.2. Conseil : vous devriez parler soit d'un changement de distance entre le noyau et la couche externe d'électrons, soit d'un changement du nombre de protons dans le noyau.
- **1.4** De manière générale, quelle est la tendance du rayon atomique lorsque vous traversez une période (de gauche à droite) dans le modèle 1? Justifiez votre réponse à l'aide d'un exemple.
- **1.5** En utilisant vos connaissances sur l'attraction coulombienne et la structure de l'atome, expliquez la tendance du rayon atomique que vous avez identifiée à la question 1.4.

Français 6/20

Model 1 - Main Group Elements

H H							2 He
•							•
37							31
1312							2372
2.1							N/A
3 Li	4 Be	5 B	6 C	7 N	8 O	9 F	10 Ne
0	(1)	(i)	(0	•	0	0
152	112	83	77	71	66	71	70
520	900	801	1086	1402	1314	1681	2081
1.0	1.5	2.0	2.5	3.0	3.5	4.0	N/A
11 Na	12 Mg	13 A1	14 Si	15 P	16 S	17 C1	18 Ar
(O)	(iii)	(iii)	(iii)	((iii)	(iii)	(
186	160	143	117	115	104	99	98
496	738	578	786	1011	1000	1251	1521
0.9	1.2	1.5	1.8	2.1	2.5	3.0	N/A
19 K	20 Ca	31 Ga	32 Ge	33 A s	34 Se	35 Br	36 Kr
	(0		
227	197	122	123	125	117	114	112
404	550	558	709	834	869	1008	1170
0.8	1.0	1.7	1.8	1.9	2.1	2.5	N/A

Atomic Number Element Symbol Electron Shell Diagram Atomic Radius (pm)

Atomic Radius (pm)

1st Ionization Energy (kJ/mol)

Electronegativity

Note: The transition elements and f-block elements have been removed from the periodic table here to ease the analysis of the trends.

Français 7/20

PROBLÈME 2 - LA LIAISON CHIMIQUE

10 Points

2.1 Voici une série des formules développées :

- a) Corrigez les fausses représentations de liaisons sur les molécules ou les sels ci-dessus (vous ne devez pas tenir compte des erreurs stériques)
- b) Le cas échéant, dessinez les paires d'électrons manquantes
- c) Nommez tous les types de liaisons et justifiez votre réponse
- d) Indiquez toutes les charges et si nécessaire, modifiez le formalisme des liaisons
- 2.2 Remplissez le tableau ci-dessous de manière appropriée.

Formule	Structure Lewis	VSEPR (molécule 3D)	Vecteurs du moment dipolaire	Principale force intermoléculaire
CH ₃ Cl				
H ₂ O				
SO ₃				

Exemple du vecteurs du moment dipolaire :

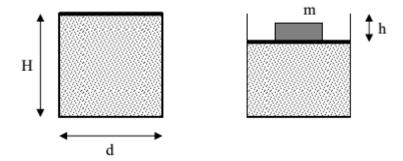
Français 8/20

Problème 3 - Stoechiométrie

10 Points

Le chlorure de calcium peut être produit par attaque calcaire à l'aide d'acide chlorhydrique avec un pourcentage massique de 36.0% et une densité de 1.18 g/mL.

Considérons un échantillon de calcaire dans lequel le pourcentage massique de carbonate de calcium (CaCO₃) est égal à 98.0%.


- 3.1 Calculez, en kilogrammes, la masse de calcaire et, en litres, le volume d'acide chlorhydrique nécessaire pour produire 400.0 L de solution de chlorure de calcium de pourcentage massique 35.0% (ρ = 1.338 g/mL à 20°C) en supposant que la réaction est complète dans des conditions stœchiométriques.
- **3.2** Quel volume de dioxyde de carbone sera libéré à une température de 20°C et à une pression de 1.00 bar?

Français 9/20

PROBLÈME 4 - LES GAZ 10 POINTS

Un **cylindre** de diamètre d = 25 cm et de hauteur H = 35 cm est fermé, à son extrémité supérieure, par un piston de masse et d'épaisseur négligeables. A l'intérieur du cylindre, se trouve un gaz idéal.

Un objet est délicatement posé sur le piston qui s'enfonce alors de h = 5 cm.

- **4.1** En supposant que la température du système ($T = 27^{\circ}$ C) reste inchangée et que la pression atmosphérique est la pression normale, calculer la masse m de l'objet.
- **4.2** Sans retirer l'objet, on veut ramener le piston dans sa position initiale. Pour cela, on chauffe le gaz contenu dans le cylindre. A quelle température (en °C) doit-il être porté?

Français 10/20

Problème 5 - L'équilibre chimique

10 Points

Le gaz NO_2 est un polluant atmosphérique. Selon les conditions, il peut exister dans l'air en équilibre avec son dimère N_2O_4 selon l'équation ci-dessous :

$$2 \text{ NO}_2 (g) \Longrightarrow N_2 O_4 (g)$$

À température et pression normales, 3.35 mol de N_2O_4 sont introduites dans un récipient de 50.00 L. Une fois l'équilibre atteint (avec NO_2), une concentration de N_2O_4 de 0.0643 M est mesurée.

- 5.1 Quel est le KC pour l'équilibre ci-dessus (réaction directe)?
- 5.2 Quelles sont toutes les manières possibles de déplacer cet équilibre vers N_2O_4 ? Chaque proposition doit être justifiée pour être valable.
- **5.3** Quel est le K_c pour l'équilibre ci-dessous (réaction indirecte)?

$$2 \text{ NO}_2 (g) \Longrightarrow N_2 O_4 (g)$$

Français 11/20

PROBLEM 6 - THERMOCHIMIE

10 Points

Lorsque l'aluminium est ajouté à l'oxyde de fer (III), du fer métallique et de l'oxyde d'aluminium sont formés.

- **6.1** Écrivez l'équation de la réaction et équilibrez-le.
- **6.2** Cette réaction est-elle exo- ou endothermique? Esquissez son profil de réaction.
- **6.3** Cette réaction est-elle spontanée à 25°C? Justifiez votre réponse par un calcul.
- **6.4** A quelle température cette réaction devient-elle spontanée?
- 6.5 Comment s'appelle ce mélange d'aluminium et d'oxyde de fer vu dans la série "Breaking Bad"?
- 6.6 Pour quelle opération de la "vie quotidienne" utilise-t-on cette réaction?

	Thermochemical tables							
Substance	Δ Hf° (kJ/mol)	Δ Gf° (kJ/mol)	S° (J/mol K)					
Al(s)	0.0	0.0	28.3					
Al(g)	330.0	289.4	164.6					
AlCl ₃ (s)	-704.2	-628.8	109.3					
$Al_2O_3(s)$	-1675.7	-1582.3	50.9					
Fe(s)	0.0	0.0	27.3					
Fe(g)	416.3	370.7	180.5					
Fe ²⁺ (aq)	-89.1	-78.9	-137.7					
Fe ³⁺ (aq)	-48.5	-4.7	-315.9					
FeCl ₂ (s)	-341.8	-302.3	118.0					
FeCl ₃ (s)	-399.5	-334.0	142.3					
FeO(s)	-272.0	-251.4	60.7					
Fe ₂ O ₃ (s)	-824.2	-742.2	87.4					
Fe ₃ O ₄ (s)	-1118.4	-1015.4	146.4					
FeS ₂ (s)	-178.2	-166.9	52.9					
FeCO ₃ (s)	-740.6	-666.7	92.9					
NO ₂ (g)	33.05	51.84	239.74					
$N_2O_4(g)$	9.67	98.28	304.30					

Français 12/20

Problème 7 - Cinétique chimique

10 Points

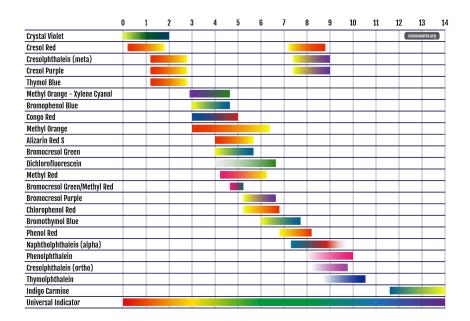
7.1 Une étudiante analyse la vitesse de réaction de la dissolution de la craie dans l'acide chlorhydrique.

- a) Identifiez trois expériences, parmi les 6 ci-dessus, qui peuvent être comparées pour montrer l'effet de la concentration sur la vitesse de réaction. Justifiez.
- b) Identifiez l'expérience qui aura la plus grande vitesse de réaction et expliquez pourquoi.
- **7.2** On suit la cinétique de la réaction CCl_3COOH (aq) $\longrightarrow CO_2 + CHCl_3$ à $70^{\circ}C$. On mesure ensuite les concentrations suivantes du réactif en fonction du temps :

t/h	$[CCl_3COOH] / mol L^{-1}$
0.00	0.1000
1.00	0.09403
2.00	0.08842
3.00	0.08314
4.00	0.07817
5.00	0.07351

Quel est l'ordre de la réaction et la valeur de la constante de vitesse k?

Français 13/20


PROBLÈME 8 - ACIDE-BASE

10 Points

Vous trouvez une fiole non étiquetée dans l'armoire à acide de votre laboratoire. Vous décidez de déterminer de quel type d'acide il s'agit en effectuant un titrage. Vous prenez 0.82 g de l'acide inconnu et le dissolvez dans 50 mL d'eau désionisée. Vous titrez ensuite votre solution avec du NaOH 0.4 M et vous obtenez la courbe suivante :

- a) Déterminez de quel acide il s'agit.
- b) Ecrivez les deux premières équations de la réaction d'hydrolyse.
- c) Si vous n'aviez pas accès à un pH-mètre, quel mélange d'indicateurs colorés pourriez-vous utiliser pour déterminer les deux points d'équivalence? Quelles seront les couleurs de la solution pendant toute la durée du titrage si vous utilisez ce mélange?

Français 14/20

Acid	НА	A -	Ka	рКа
Iodic	HIO ₃	IO ₃ -	1.6×10^{-1}	0.80
Oxalic (1)	$H_2C_2O_4$	HC ₂ O ₄ ⁻	5.9×10^{-2}	1.23
Sulfurous (1)	H_2SO_3	HSO ₃ -	1.54×10^{-2}	1.81
Sulfuric (2)	HSO ₄ -	SO ₄ ²⁻	1.2×10^{-2}	1.92
Chlorous	HClO ₂	ClO ₂ -	1.1×10^{-2}	1.96
Phosphoric (1)	H ₃ PO ₄	H ₂ PO ₄	7.52×10^{-3}	2.12
Arsenic (1)	H ₃ AsO ₄	H ₂ AsO ₄ ⁻	5.0×10^{-3}	2.30
Chloroacetic	CH ₂ ClCOOH	CH ₂ ClCOO ⁻	1.4×10^{-3}	2.85
Citric (1)	$H_3C_6H_5O_7$	$H_2C_6H_5O_7^-$	8.4×10^{-4}	3.08
Hydrofluoric	HF	F ⁻	7.2×10^{-4}	3.14
Nitrous	HNO_2	NO ₂ -	4.0×10^{-4}	3.39
Formic	НСООН	HCOO-	1.77×10^{-4}	3.75
Lactic	HCH ₃ H ₅ O ₃	CH ₃ H ₅ O ₃	1.38×10^{-4}	3.86
Ascorbic (1)	$H_2C_6H_6O_6$	HC ₆ H ₆ O ₆ -	7.9×10^{-5}	4.10
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	6.46×10^{-5}	4.19
Oxalic (2)	HC ₂ O ₄ -	$C_2O_4^{2-}$	6.4×10^{-5}	4.19
Hydrazoic	HN_3	N ₃ -	1.9×10^{-5}	4.72
Citric (2)	$H_2C_6H_5O_7^-$	HC ₆ H ₅ O ₇ ²⁻	1.8×10^{-5}	4.74
Acetic	CH ₃ COOH	CH ₃ COO ⁻	1.76×10^{-5}	4.75
Propionic	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO ⁻	1.34×10^{-5}	4.87
Pyridinium ion	C ₅ H ₄ NH ⁺	C ₅ H ₄ N	5.6×10^{-6}	5.25
Citric (3)	$HC_6H_5O_7^{2-}$	C ₆ H ₅ O ₇ ³⁻	4.0×10^{-6}	5.40
Carbonic (1)	H ₂ CO ₃	HCO ₃	4.3×10^{-7}	6.37
Sulfurous (2)	HSO ₄	SO ₄ ²⁻	1.02×10^{-7}	6.91
Arsenic (2)	H ₂ AsO ₄ ⁻	HAsO ₄ ²⁻	8/9.3 x 10 ⁻⁸	7.10/7.03
Hydrosulfuric	H_2S	HS-	$1.0 \times 10^{-7} / 9.1 \times 10^{-8}$	7/7.04
Phosphoric (2)	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	6.23 x 10 ⁻⁸	7.21
Hypochlorous	HClO	ClO-	$3.5/3.0 \times 10^{-8}$	7.46/7.53
Hypobromous	HBrO	BrO ⁻	2.0×10^{-9}	8.70
Hydrocyanic	HCN	CN-	6.17×10^{-10}	9.21
Boric (1)	H_3BO_3	H ₂ BO ₃ -	5.8×10^{-10}	9.23
Ammonium ion	NH ₄ ⁺	NH ₃	5.6×10^{-10}	9.25
Phenol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	1.6×10^{-10}	9.80
Carbonic (2)	HCO ₃	CO ₃ ²⁻	4.8×10^{-11}	10.32
Hypoiodous	HIO	IO ⁻	2.0×10^{-11}	10.70
Arsenic (3)	HAsO ₄ ²⁻	AsO ₄ ³⁻	$6.0 \times 10^{-10} / 3.0 \times 10^{-12}$	9.22/11.53
Hydrogen peroxide	H_2O_2	HO ₂ -	2.4×10^{-12}	11.62
Ascorbic (2)	$HC_6H_6O_6^-$	$C_6H_6O_6^{2-}$	1.6×10^{-12}	11.80
Phosphoric (3)	HPO ₄ ²⁻	PO ₄ ³⁻	$4.8/2.2 \times 10^{-13}$	12.32/12.66

Français 15/20

PROBLÈME 9 - RÉDUCTION-OXYDATION

10 Points

Pour déterminer le fer en solution sous forme d'ions ferreux (Fe^{2+} (aq)), il est possible de les titrer en milieu acide (contenant H^+) en les faisant réagir avec une solution de permanganate (MnO_4^- (aq)) de concentration connue.

- 9.1 Déterminez la demi-équation de l'oxydation.
- 9.2 Déterminez la demi-équation de la réduction.
- **9.3** Écrivez et équilibrez l'équation globale d'oxydoréduction.

Conseil : Si vous n'avez pas trouvé l'équation de l'équilibre global, vous pouvez utiliser l'équation du titrage en milieu neutre pour la suite de l'exercice :

$$10\,FeSO_4 + 2\,KMnO_4 + 8\,H_2O \longrightarrow 2\,MnSO_4 + 5\,Fe_2(SO_4)_3 + 16\,KOH$$

La teneur en sulfate de fer (II) d'un échantillon doit être déterminée. Pour ce faire, on dissout 1.00 g de FeSO₄ dans de l'eau et on acidifie la solution.

La solution obtenue est titrée en ajoutant goutte à goutte une solution de 0.025 mol/L de permanganate jusqu'à ce qu'une couleur violette persistante apparaisse après l'addition de 24.5 mL (à cause de l'excès de MnO_4^- (aq)).

- 9.4 Calculez en grammes la masse de FeSO4 contenue dans cet échantillon.
- 9.5 Calculez la teneur en masse de FeSO4 (en %) dans cet échantillon.

Français 16/20

PROBLÈME 10 - ELECTROCHIMIE

10 Points

Jet-setter que vous êtes, vous partez en week-end sur votre yacht privé pour faire une petite croisière en Méditerranée. Malheureusement, votre bateau heurte des rochers pendant une tempête et vous vous échouez sur une plage inconnue et vide. A votre réveil, vous regardez autour de vous pour voir si vous avez quelque chose qui pourrait vous aider à vous sortir de cette situation. Vous trouvez votre téléphone portable et son câble d'alimentation, mais malheureusement, sa batterie est vide. Vous regardez autour de vous sur la plage et vous réalisez que vous avez accès aux matériaux suivants :

- Boîtes en aluminium
- Charbon
- Oxygène de l'air et de l'eau
- Eau de mer
- Le matériel de vos vêtements

En supposant que vous ayez besoin d'environ 12 V pour allumer votre téléphone et appeler à l'aide, expliquez comment vous allez vous y prendre. Faites des schémas pour vous aider. Pour vous faciliter la vie, considérez que nous travaillons dans des conditions normales et non acides!

10.1 Dessinez un schéma étiqueté d'un dispositif permettant la production du 12 V selon les normes de l'électrochimie.

Dans votre schéma, les informations suivantes doivent apparaître :

- Les pôles négatifs et positifs
- L'anode et la cathode
- Le sens des demi-réactions
- Les directions des ions dans le pont salin
- Le sens du mouvement des électrons et du courant électrique
- **10.2** Donnez les deux demi-réactions et la réaction globale.
- 10.3 Calculez la différence de potentiel standard du dispositif dessiné.

Français 17/20

TABLE 18.1	Standard Reduction Potentials	at 25°C		
	Reduction Half-Reaction		(v)	page 775
Stronger	F ₂ (g) + 2 €	> 2 F⁻(aq)	2.87	144 - 1
xidizing agent	H ₂ O ₂ (aq) + 2 H*(aq) + 2 €	\longrightarrow 2 H ₂ O(I)	1.78	Weaker
Andrewing agonic	MnO₄⁻(aq)+ 8 H*(aq)+ 5 €	$F \longrightarrow Mn^{2+}(aq) + 4 H_2O(I)$	1.51	reducing age
	Cl ₂ (g) + 2 e ⁻	> 2 Cl⁻(aq)	1.36	
	Cr ₂ O ₇ ² ¬(aq) + 14 H*(aq) + 6	S ∈ → 2 Cr ³⁺ (aq) + 7 H ₂ O(I)	1.33	
	$O_2(g) + 4 H^+(aq) + 4 \sigma$	\longrightarrow 2 H ₂ O(I)	1.23	
	Br₂(/) + 2 €	\longrightarrow 2 Br(aq)	1.09	
	Ag*(aq)+ e-	$\longrightarrow Ag(s)$	0.80	
	Fe ³⁺ (aq) + e ⁻	— Fe²+(aq)	0.77	
	O₂(g) + 2 H*(aq) + 2 €	$\longrightarrow H_2O_2(aq)$	0.70	
	l ₂ (s) + 2 €	> 2 h(aq)	0.54	
	$O_2(g) + 2 H_2O(l) + 4 \in$	\longrightarrow 4 OH ⁻ (aq)	0.40	
	Cu ² *(aq) + 2 €	$\longrightarrow Cu(s)$	0.34	
	Sn⁴+(aq)+2 €	> Sn²+(aq)	0.15	
	2 H*(aq) + 2 e	> H₂(g)	0	
	Pb2+(aq)+ 2e-	> Pb(s)	-0.13	
	Ni ²⁺ (aq) + 2 €	> Ni(s)	-0.26	
	Cd ²⁺ (aq)+ 2 €	$\longrightarrow Cd(s)$	-0.40	
	Fe²+(aq) + 2 €	> Fe(s)	-0.45	
	Zn ²⁺ (aq) + 2 €	$\longrightarrow Zn(s)$	-0.76	
	2 H ₂ O(I) + 2 €	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83	
	Al ³⁺ (ag) + 3 €	$\longrightarrow AI(s)$	-1.66	
Weaker	Mg ²⁺ (<i>aq</i>) + 2 e⁻	$\longrightarrow Mg(s)$	-2.37	Ct
idizing agent	Na*(aq) + e-	$\longrightarrow Na(s)$	-2.71	Stronger
roteing agont	Li+(aq) + e-	$\longrightarrow Li(s)$	-3.04	reducing age

Français 18/20

PROBLÈME 11 - SOLUBILITÉ

10 Points

La lithiase urinaire (ou rénale) est une affection caractérisée par la formation de petites accrétions cristallines appelées "calculs rénaux".

Ces "calculs"/ "pierres" sont constituées principalement de cristaux d'oxalate de calcium (CaC₂O₄).

Sachant que la valeur K_s de ce sel est de $2.3 \cdot 10^{-9} M^2$:

- 11.1 Ecrivez l'expression du produit ionique des espèces en solution.
- 11.2 Déterminez le volume minimal de solution aqueuse nécessaire pour solubiliser un calcul rénal pur en CaC_2O_4 pesant 768 mg.
- 11.3 Dans l'échantillon d'urine d'un patient, on mesure une concentration de $2.5 \cdot 10^{-6} M$ d'ions oxalate $(C_2 O_4^{2-})$ et de $5.0 \cdot 10^{-4} M$ d'ions de calcium. Y a-t-il un risque de précipitation d'un calcul rénal chez ce patient? La réponse doit être justifiée avec tous les calculs nécessaires.

Français 19/20

PROBLÈME 12 - CHIMIE ORGANIQUE

10 Points

Une étudiante a conçu la séquence de réaction suivante :

- 12.1 Suggérez un réactif approprié pour effectuer :
 - a) L'étape W
 - b) L'étape Y
- 12.2 Quel type de réaction se produit à :
 - a) L'étape X
 - b) L'étape Z
- 12.3 Nommez l'autre produit qui est susceptible d'être formé dans l'étape Y.
- 12.4 Nommez un réactif qui pourrait être utilisé pour distinguer entre A et F.
- **12.5** Pourquoi C ne possède-t-il pas d'isomères géométrique malgré la présence d'une double liaison carbone-carbone.
- 12.6 Parmi les composés A à F, lesquels ont des isomères optiques?
- 12.7 Donnez le nom IUPAC du composé B.

Français 20/20