

CHEMISTRY. OLYMPIAD.CH

CHEMIE-OLYMPIADE OLYMPIADES DE CHIMIE OLIMPIADI DELLA CHIMICA

SwissChO 2023 - Central Exam SOLUTION KEY

PROBLEM 1 - PERIODIC TRENDS

12.0 POINTS

1.1a The first number shown below the electron shell diagram (1 pt)

1.1b pm - picometers (1 pt)

1.1c Answers will vary. The distance from the center of the atom (nucleus) to its outer electrons. (1 pt)

1.2 The atomic radius gets larger as you go down a group (column) in Model 1. Thus, Li is smaller than Na. (2 pts)

1.3 Atomic radii increase top to bottom because the number of energy levels increases, decreasing the "pull" on electrons from the protons in the nucleus and making the size of the atom larger. The highest occupied energy level has the greatest radius because as the number of electrons increase, new energy levels need to be added further away from the nucleus, making the size of the atom increase. (2 pts)

1.4 The atomic radius decreases from left to right across a period. Li is larger than F. (2 pts)

1.5 Atomic radii decrease left to right because the number of protons increases, which increases the attractive force on the electrons, and pulls the electrons in the same energy level closer to the nucleus. (1 pt)

2.1

PROBLEM 2 - CHEMICAL BONDING

10 POINTS

$L_{i}^{\bigoplus}, \bigcirc_{i}^{\bigoplus}, \overset{H}{\overset{O}}$

- a) 1 pt
- b) 1 pt
- c) 1 pt
- d) 1 pt

2.2 Fill in the table below	appropriately.	(6 pts)
-----------------------------	----------------	---------

Formula	Lewis structure	VSEPR (3D molecule)	Dipolar moment vectors $Ex: \overset{\circ}{H} \xrightarrow{F}$	Main intermolecular force
CH₃Cl	:СІ: HСН Н			Dipole- dipole
H ₂ O	:О́——Н Н	:	H H	H-bond
SO ₃	· O [·] • O · O · · · · · · · · · · · · · · · · · · ·	0 S0 ⊖ 	none	London dispersion forces

PROBLEM 3 - STOICHIOMETRY

10 POINTS

 $CaCO_{3}(s) + 2 HCl (aq) \longrightarrow CaCl_{2}(aq) + CO_{2}(g) + H_{2}O (l) (1 pt)$

3.1 Mass of CaCl₂ in 400.0 L of solution $m_{\text{CaCl}_2} = \rho * V * w_{\text{CaCl}_2} = 1.338 * 10^3 g/L * 400L * 0.350 = 1.875 * 10^5 g \text{ (1 pt)}$

Associated number of moles $n_{\text{CaCl}_2} = \frac{m_{\text{CaCl}_2}}{M_{\text{CaCl}_2}} = \frac{1.873 * 10^5 g}{110.98 g/mol} = 1.688 * 10^3 mol \text{ (1 pt)}$

Number of moles + mass of necessary CaCO₃ $n_{CaCO_3} = n_{CaCl_2} = 1.688 * 10^3 mol$ (0.5 pt)

 $m_{CaCO_3} = 1.688 * 10^3 mol * 100.09g/mol = 1.690 * 10^5 g = 169kg$ massoflimestone = $m_{limestone} = \frac{m_{CaCO_3}}{w_{CaCO_3}} = \frac{169.0kg}{0.98} = 172g$ (0.5 pt)

Necessary Volume of HCl: Number of moles of HCl = $n_{\text{KCl}} = 2 * n_{\text{CaCl}_2} = 2 * 1.688 * 10^3 mol = 3.376 * 10^3 mol$ (1 pt)

 $\rho_{\text{solution}} = d * \rho_{\text{H}_2\text{O}, \text{k}^\circ\text{C}} = 1.18 * 1.00 * 10^3 g/L = 1.18 * 10^3 g/L \text{ (0.5 pt)}$

 $\gamma_{\rm HCl} = 1.18 * 10^3 g/L * 0.360 = 424.8g/L$ (0.5 pt)

 $c_{\rm HCl} = \frac{\gamma_{\rm HCl}}{M_{\rm HCl}} = \frac{424.8g/L}{86.46g/mol} = 11.65mol/L$ (1 pt)

 $V_{\text{HCl}} = \frac{n_{\text{HCl}}}{c_{\text{HCl}}} = \frac{3.376*10^3 mol}{11.68 mol/L} = 290L$ (1 pt)

3.2 Volume of CO₂ formed $n_{CO_2} = n_{CaCl_2} = 1.688 * 10^3 mol$ (1 pt)

We consider CO₂ as an ideal gas: $V_{\text{CO}_2} = \frac{n_{\text{CO}_2}RT}{p} = \frac{1.688*10^3 mol * 8.3145 J/mol * k * 293,1K}{1.00*10^5 Pa} = 41.1m^3$ (1 pt)

PROBLEM 4 - GASES

10 POINTS

4.1 $P_1V_1 = P_2V_2$ $P_2 = \frac{P_2V_1}{V_2} = \frac{101325*0.0172}{0.0147} = 118557, 14Pa$ (2 pts) $\Delta P = P_2 - P_{atm} = 17232, 143Pa$ (1 pt) $P = \frac{F}{s}$ $F = P * s = 17232.14 * (\frac{0.25}{2})^2 * \pi = 848.88N$ (1 pt) F = m * g $m = \frac{F}{g} = \frac{846.88}{9.81} = 86.23kg$ (1 pt)

4.2 $V_3 = V_1$ (1 pt) $\frac{V_1}{T_3} = \frac{V_2}{T_2}$ $T_3 = \frac{V_{1*T_2}}{V_2} = \frac{0.0172*300}{0.0147} = 351.02K$ (2 pts) $T_3 = 351.02 - 273 = 78C$ (1 pt)

10 POINTS

PROBLEM 5 - CHEMICAL EQUILIBRIUM

5.1

	2 NO ₂	₹	N2O4	
Situation initiale	-		0.0670 M	(Ipt)
			(3.35/50)	
Equation	2X		0.067 - X = 0.0643	(Ipt)
-			М	
Equilibre	0.0054 M		0.0643	(Ipt)

$$Kc = \frac{[N_2 O_4]}{[NO_n]^2} \text{ (Ipt)}$$
$$Kc = \frac{0.0643}{(0.0054)^2} = 2'205.075 \text{ (Ipt)}$$

5.2

 $\Delta H_r = \Delta H_{f(N_2O_4)} - 2\Delta H_{f(NO_2)} = 9,16 \frac{kJ}{mol} - 2\left(33,18\frac{kJ}{mol}\right) = -57,2 \frac{kJ}{mol} \rightarrow réaction \, exothermique$

(1pt)

- 1) Travailler à basse température (1pt)
- 2) Travailler à haute pression car 2 mol à gauche et 1 seule mol à droite (1pt)
- 3) Travailler avec une concentration élevée de NO_2 ou retirer le N_2O_4 au fur et à mesure qu'il est formé pour en diminuer sa concentration (1pt)

5.3

N2O4 (g)
$$\rightleftharpoons$$
 2 NO2 (g)

$$K_{c\,indirect} = \frac{1}{K_{c\,direct}} = \frac{1}{2205.075} = 4.535 \cdot 10^{-4} \,(1pt)$$

PROBLEM 6 - THERMOCHEMISTRY

10 POINTS

```
\textbf{6.1 } 2\,\text{Al} + \text{Fe}_2\text{O}_3 \longrightarrow 2\,\text{Fe} + \text{Al}_2\text{O}_3 \text{ (1pt)}
```

```
6.2 (2 pts)
```


- **6.3** $\Delta Gr = \Delta Hr * TSr = (-851.5) * 298.15 * (-36.5) = -840.6 < 0$ -> spontaneous (3 pts)
- **6.4** $\Delta Gr = 0 T = \Delta Hr/Sr = 23.328K$ (2 pts)
- **6.5** Thermite (1 pt)
- **6.6** For soldering railway tracks together (1 pt)

PROBLEM 7 - CHEMICAL KINETICS

10 Points

7.1a B, E and F since they are all ran at the same temperature with different concentrations or areas to react. (3 pts)

7.1b D will have the greatest rate, since it has the highest temperature, concentration as well as the best ability to mix. (2 pts)

7.2 (5 pts)

The concentration vs time graphe is constant, hence the reaction is of zero order.

v = k meaning you need the slope of the curve. K = 0.0053

PROBLEM 8 - ACID BASE

10 POINTS

8a (6 pts)

a) PkaI = I.9, pka2 = 7.4By comparing with the table below, $\rightarrow H_3PO_4$

 $\begin{array}{l} \textbf{8b} \ (2 \ \text{pts}) \ \text{H}_3\text{PO}_3 \ + \ \text{NaOH} \longrightarrow \text{NaH}_2\text{PO}_3 \ + \ \text{H}_2\text{O} \\ \text{NaH}_2\text{PO}_3 \ + \ \text{NaOH} \longrightarrow \text{Na}_2\text{HPO}_3 \ + \ \text{H}_2\text{O} \end{array}$

8c (2 pts) A mixture of xylene cyanol and themolphtalein. It starts off purple, transits to green and then turns blue.

PROBLEM 9 - REDOX

10 POINTS

9.1 $\operatorname{Fe}^{2+} \longrightarrow \operatorname{Fe}^{3+} + e^{-}$ (1 pt)

 $\textbf{9.2} \text{ MnO}_4{}^- + 8 \text{ H}^+ + 5 \text{ e}^- \longrightarrow \text{Mn}^{2+} + 4 \text{ H}_2\text{O} \text{ (2 pts)}$

9.3 5 Fe²⁺ + MnO₄⁻ + 8 H⁺ \longrightarrow 5 Fe³⁺ + Mn²⁺ + 4 H₂O (2 pts)

9.4 (4 pts)

	$5Fe^{2+}$	+	MnO₄ ⁻	+	8H+	\rightarrow	5Fe ³⁺	+	Mn ²⁺	+	4H ₂ O
C :			0.025 M								
V:			0.0245 L								
n :	0.00306 mol(Ipt)		0.0006125 mol (Ipt)								
MM :	151,908 g/mol (Ipt)										
m :	0.465 g (Ipt)										

9.5 $Teneurmassique = \frac{0.465}{1} * 100 = 46.5\%$ (1 pt)

PROBLEM 10 - ELECTROCHEMISTRY

10 POINTS

10.1 (6 pts)

10.2 (2 pts) $O_2 + 4 H^+ + 4 e^- \longrightarrow H_2O 3 E = 1.23 V$ $Al^{3+} + 3e^{-} \longrightarrow Al 4 E = 1.66 V$ $3 O_2 + 4 Al + 12 H^+ \longrightarrow 6 H_2 O + 4 Al^{3+}$

10.3 (2 pts) $\Delta E = 1.23 - (-1.66) = 2.89V$

Figure 1: for 12 Volts you need at least 5 systems wired up in series

PROBLEM 11 - SOLUBILITY

11.1 (1 pt) CaC₂O₄ \longleftrightarrow Ca²⁺ (aq) + C₂O₄²⁻ (aq) $K_s = [Ca^{2+}] * [C_2O_4^{2-}] = 2.3 * 10^{-9}M^2$

11.2 (6 pts) m = 0.768gM(x) = 128.102g/mol (1 pt) $n = \frac{m}{M(x)} = 6.00 * 10^{-3}$ (1 pt) $S = [Ca^{2+}] = [C_2O_4^{2-}] - > K_s = S^2$ (1 pt) $S = K_s^{0.5} = 4.8 * 10^{-5}mol/L$ (1 pt) $S = \frac{n}{V} - > V = \frac{n}{S} = \frac{0.006mol}{4.80M * 10^{-5}M} = 125L$ (2 pts)

11.3 (3 pts) $\Pi = [2.5 * 10^{-6}M] * [5.0 * 10^{-4}M] = 1.00 * 10^{-9}M^2 (1 \text{ pt})$ if $\Pi < K_s$ (1 pt) No precipitation (1 pt) **10 POINTS**

PROBLEM 12 - ORGANIC CHEMISTRY

10 POINTS

12.1a Step W = reduction, so LiAlH₄ or NaBH₄ (1pt)

12.1b Step Y = Addition, so HBr (1 pt)

12.2a Step x = dehydration (1 pt)

12.2b Step Z = Oxydation (1 pt)

12.3 1- Brombutane (1 pt)

12.4 Tollens reagent AgNO₃ + NaOH. The aldehyde will be oxydized and not the ketone. (1 pt)
12.5 Because the double bon dis on a terminal carbon and there are no assymetric carbons. (1 pt)
12.6 D and E each have an assymetric carbon. (2 pts)

12.7 Butan-1-ol (1 pt)