

CHEMISTRY. OLYMPIAD.CH

CHEMIE-OLYMPIADE

OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA

SwissChO 2023 - Central Exam SOLUTION KEY

1.1a The first number shown below the electron shell diagram (1 pt)
1.1b pm - picometers (1 pt)
1.1c Answers will vary. The distance from the center of the atom (nucleus) to its outer electrons. (1 pt)
1.2 The atomic radius gets larger as you go down a group (column) in Model 1. Thus, Li is smaller than Na . (2 pts)
1.3 Atomic radii increase top to bottom because the number of energy levels increases, decreasing the "pull" on electrons from the protons in the nucleus and making the size of the atom larger. The highest occupied energy level has the greatest radius because as the number of electrons increase, new energy levels need to be added further away from the nucleus, making the size of the atom increase. (2 pts)
1.4 The atomic radius decreases from left to right across a period. Li is larger than F. (2 pts)
1.5 Atomic radii decrease left to right because the number of protons increases, which increases the attractive force on the electrons, and pulls the electrons in the same energy level closer to the nucleus. (1 pt)

2.1

a) 1 pt
b) 1 pt
c) 1 pt
d) 1 pt
2.2 Fill in the table below appropriately. (6 pts)

Formula	Lewis structure	VSEPR (3D molecule)	Dipolar moment vectors Ex:	Main intermolecular force
$\mathrm{CH}_{3} \mathrm{Cl}$				Dipoledipole
$\mathrm{H}_{2} \mathrm{O}$				H-bond
SO_{3}			none	London dispersion forces

Problem 3-Stoichiometry

$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(1 \mathrm{pt})$
3.1 Mass of CaCl_{2} in 400.0 L of solution
$m_{\mathrm{CaCl}_{2}}=\rho * V * w_{\mathrm{CaCl}_{2}}=1.338 * 10^{3} g / L * 400 L * 0.350=1.875 * 10^{5} g(1 \mathrm{pt})$
Associated number of moles
$n_{\mathrm{CaCl}_{2}}=\frac{m_{\mathrm{CaCl}_{2}}}{M_{\mathrm{CaCl}_{2}}}=\frac{1.873 * 10^{5} \mathrm{~g}}{110.98 \mathrm{~g} / \mathrm{mol}}=1.688 * 10^{3} \mathrm{~mol}(1 \mathrm{pt})$
Number of moles + mass of necessary CaCO_{3}
$n_{\mathrm{CaCO}_{3}}=n_{\mathrm{CaCl}_{2}}=1.688 * 10^{3} \mathrm{~mol}(0.5 \mathrm{pt})$
$m_{\mathrm{CaCO}_{3}}=1.688 * 10^{3} \mathrm{~mol} * 100.09 \mathrm{~g} / \mathrm{mol}=1.690 * 10^{5} \mathrm{~g}=169 \mathrm{~kg}$
massoflimestone $=m_{\text {limestone }}=\frac{m_{\mathrm{CaCO}_{3}}}{w_{\mathrm{CaCO}_{3}}}=\frac{169.0 \mathrm{~kg}}{0.98}=172 g(0.5 \mathrm{pt})$
Necessary Volume of HCl :
Number of moles of $\mathrm{HCl}=n_{\mathrm{KCl}}=2 * n_{\mathrm{CaCl}_{2}}=2 * 1.688 * 10^{3} \mathrm{~mol}=3.376 * 10^{3} \mathrm{~mol}(1 \mathrm{pt})$

$$
\begin{aligned}
& \rho_{\text {solution }}=d * \rho_{\mathrm{H}_{2} \mathrm{O}, \mathrm{k}^{\circ} \mathrm{C}}=1.18 * 1.00 * 10^{3} \mathrm{~g} / L=1.18 * 10^{3} \mathrm{~g} / L(0.5 \mathrm{pt}) \\
& \gamma_{\mathrm{HCl}}=1.18 * 10^{3} \mathrm{~g} / L * 0.360=424.8 \mathrm{~g} / L(0.5 \mathrm{pt}) \\
& c_{\mathrm{HCl}}=\frac{\gamma_{\mathrm{HCl}}}{M_{\mathrm{HCl}}}=\frac{424.8 \mathrm{~g} / L}{86.46 \mathrm{~g} / \mathrm{mol}}=11.65 \mathrm{~mol} / L(1 \mathrm{pt}) \\
& V_{\mathrm{HCl}}=\frac{n_{\mathrm{HCl}}}{c_{\mathrm{HCl}}}=\frac{3.376 * 10^{3} \mathrm{~mol}}{11.68 \mathrm{~mol} / L}=290 L(1 \mathrm{pt})
\end{aligned}
$$

3.2 Volume of CO_{2} formed
$n_{\mathrm{CO}_{2}}=n_{\mathrm{CaCl}_{2}}=1.688 * 10^{3} \mathrm{~mol}(1 \mathrm{pt})$
We consider CO_{2} as an ideal gas:
$V_{\mathrm{CO}_{2}}=\frac{{ }^{n} \mathrm{CO}_{2} R T}{p}=\frac{1.688 * 10^{3} \mathrm{~mol} * 8.3145 \mathrm{~J} / \mathrm{mol} * \mathrm{k} * 293,1 \mathrm{~K}}{1.00 * 10^{5} \mathrm{~Pa}}=41.1 \mathrm{~m}^{3}(1 \mathrm{pt})$

4.1 $P_{1} V_{1}=P_{2} V_{2}$
$P_{2}=\frac{P_{2} V_{1}}{V_{2}}=\frac{101325 * 0.0172}{0.0147}=118557,14 P a(2 \mathrm{pts})$
$\Delta P=P_{2}-P_{a t m}=17232,143 P a(1 \mathrm{pt})$
$P=\frac{F}{s}$
$F=P * s=17232.14 *\left(\frac{0.25}{2}\right)^{2} * \pi=848.88 N(1 \mathrm{pt})$
$F=m * g$
$m=\frac{F}{g}=\frac{846.88}{9.81}=86.23 \mathrm{~kg}(1 \mathrm{pt})$
4.2 $V_{3}=V_{1}(1 \mathrm{pt})$
$\frac{V_{1}}{T_{3}}=\frac{V_{2}}{T_{2}}$
$T_{3}=\frac{V_{1} * T_{2}}{V_{2}}=\frac{0.0172 * 300}{0.0147}=351.02 \mathrm{~K}(2 \mathrm{pts})$
$T_{3}=351.02-273=78 C(1 \mathrm{pt})$

5.1

	$2 \mathrm{NO}_{2}$	\rightleftarrows	$\mathrm{~N}_{2} \mathrm{O}_{4}$	
Situation initiale	-	0.0670 M	(Ipt)	
			$(3.35 / 50)$	
Equation	2 X		$0.067-\mathrm{X}=0.0643$	(Ipt)
Equilibre	0.0054 M	0.0643	(Ipt)	

$$
\begin{gathered}
K c=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{n}\right]^{2}}(\mathrm{Ipt}) \\
K c=\frac{0.0643}{(0.0054)^{2}}=2^{\prime} 205.075(\mathrm{Ipt})
\end{gathered}
$$

5.2

$\Delta H_{r}=\Delta H_{f\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)}-2 \Delta H_{f\left(\mathrm{NO}_{2}\right)}=9,16 \mathrm{~kJ} / \mathrm{mol}-2(33,18 \mathrm{~kJ} / \mathrm{mol})=-57,2 \mathrm{~kJ} / \mathrm{mol} \rightarrow$ réaction exothermique (1pt)

1) Travailler à basse température (1pt)
2) Travailler à haute pression car 2 mol à gauche et 1 seule mol à droite (1pt)
3) Travailler avec une concentration élevée de NO_{2} ou retirer le $\mathrm{N}_{2} \mathrm{O}_{4}$ au fur et à mesure qu'il est formé pour en diminuer sa concentration (1pt)

5.3

$$
\begin{gathered}
\mathrm{N} 2 \mathrm{O} 4(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO} 2(\mathrm{~g}) \\
K_{\text {cindirect }}=\frac{1}{K_{\text {s direst }}}=\frac{1}{2205.075}=4.535 \cdot 10^{-4}(1 \mathrm{pt})
\end{gathered}
$$

$6.12 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}(1 \mathrm{pt})$
6.2 (2 pts)
$\Delta \mathrm{Hr}=\Delta \mathrm{Hf}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)-\Delta \mathrm{Hf}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=-\mathrm{I} 675.7-(-824.2)=-85 \mathrm{I} .5<0 \rightarrow$ exothermic

6.3 $\Delta G r=\Delta H r * T S r=(-851.5) * 298.15 *(-36.5)=-840.6<0->$ spontaneous (3 pts)
6.4 $\Delta G r=0-T=\Delta H r / S r=23.328 K(2 \mathrm{pts})$
6.5 Thermite (1 pt)
6.6 For soldering railway tracks together (1 pt)
7.1a B, E and F since they are all ran at the same temperature with different concentrations or areas to react. (3 pts)
7.1b D will have the greatest rate, since it has the highest temperature, concentration as well as the best ability to mix. (2 pts)

7.2 (5 pts)

The concentration vs time graphe is constant, hence the reaction is of zero order.
$\mathrm{v}=\mathrm{k}$ meaning you need the slope of the curve. $\mathrm{K}=0.0053$

8a (6 pts)
a) $\mathrm{PkaI}=\mathrm{I} .9, \mathrm{pka} 2=7.4$

By comparing with the table below, $\rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$

$\mathbf{8 b}$ (2 pts) $\mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{NaH}_{2} \mathrm{PO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaH}_{2} \mathrm{PO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+\mathrm{H}_{2} \mathrm{O}$

8c (2 pts) A mixture of xylene cyanol and themolphtalein. It starts off purple, transits to green and then turns blue.

Problem 9-Redox

10 Points
$9.1 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}(1 \mathrm{pt})$
9.2 $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ (2 pts)
$9.35 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ (2 pts)
9.4 (4 pts)

	$5 \mathrm{Fe}^{2+}$	+	$\mathrm{MnO}_{4}{ }^{-}$	+	$8 \mathrm{H}^{+}$	\longrightarrow	$5 \mathrm{Fe}{ }^{3+}$	$+$	Mn^{2+}	+	$4 \mathrm{H}_{2} \mathrm{O}$
C :			0.025 M								
V :			0.0245 L								
n :	$\begin{gathered} 0.00306 \\ \operatorname{mol}(\mathrm{Ipt}) \end{gathered}$		$\begin{gathered} 0.0006 \mathrm{I} 25 \\ \mathrm{~mol}(\mathrm{Ipt}) \end{gathered}$								
MM :	$\begin{gathered} \mathrm{I} 5 \mathrm{I}, 908 \\ \mathrm{~g} / \mathrm{mol} \\ (\mathrm{Ipt}) \end{gathered}$										
m :	$\begin{gathered} 0.465 \mathrm{~g} \\ (\mathrm{Ipt}) \end{gathered}$										

9.5 Teneurmassique $=\frac{0.465}{1} * 100=46.5 \%(1 \mathrm{pt})$
10.1 (6 pts)

10.2 (2 pts)
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} 3 \mathrm{E}=1.23 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al} 4 \mathrm{E}=1.66 \mathrm{~V}$
$3 \mathrm{O}_{2}+4 \mathrm{Al}+12 \mathrm{H}^{+} \longrightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{Al}^{3+}$
10.3 (2 pts)
$\Delta E=1.23-(-1.66)=2.89 \mathrm{~V}$

Figure 1: for 12 Volts you need at least 5 systems wired up in series
r

11.1 (1 pt)
$\mathrm{CaC}_{2} \mathrm{O}_{4} \longleftrightarrow \mathrm{Ca}^{2+}$ (aq) $+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (aq)
$K_{s}=\left[\mathrm{Ca}^{2+}\right] *\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=2.3 * 10^{-9} M^{2}$
11.2 (6 pts)
$m=0.768 g M(x)=128.102 g / \mathrm{mol}(1 \mathrm{pt})$
$n=\frac{m}{M(x)}=6.00 * 10^{-3}(1 \mathrm{pt})$
$S=\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]->K_{s}=S^{2}(1 \mathrm{pt})$
$S=K_{\mathrm{s}}{ }^{0.5}=4.8 * 10^{-5} \mathrm{~mol} / L(1 \mathrm{pt})$
$S=\frac{n}{V}->V=\frac{n}{S}=\frac{0.006 \mathrm{~mol}}{4.80 M * 10^{-5} \mathrm{M}}=125 L$ (2 pts)

11.3 (3 pts)

$\Pi=\left[2.5 * 10^{-6} M\right] *\left[5.0 * 10^{-4} M\right]=1.00 * 10^{-9} M^{2}(1 \mathrm{pt})$
if $\Pi<K_{s}$ (1 pt)
No precipitation (1 pt)
12.1a Step $W=$ reduction, so LiAlH_{4} or NaBH_{4} (1pt)
12.1b Step $Y=$ Addition, so $\mathrm{HBr}(1 \mathrm{pt})$
12.2a Step $\mathrm{x}=$ dehydration $(1 \mathrm{pt})$
12.2b Step $Z=$ Oxydation (1 pt)
12.3 1- Brombutane (1 pt)

12.4 Tollens reagent $\mathrm{AgNO}_{3}+\mathrm{NaOH}$. The aldehyde will be oxydized and not the ketone. (1 pt)
12.5 Because the double bon dis on a terminal carbon and there are no assymetric carbons. (1 pt)
12.6 D and E each have an assymetric carbon. (2 pts)
12.7 Butan-1-ol (1 pt)

