

CHEMISTRY. OLYMPIAD.CH

CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA

SwissChO 2023 - Theoretical Final Exam

SOLUTION KEY

Cool High-Temperature Superconductors (15.0 points)

Note that most of the points should be awarded for the calculations and not for their numerical results. Also watch out for consequential errors stemming from miscalculations in earlier exercises.
1.1 Determine the chemical formulae of compounds $\mathbf{A}-\mathbf{C}$.

A: $\mathrm{BaSO}_{4}, \mathrm{~B}: \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{C}: \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
1.5pts total. $0.5 p t s$ per correct compound.
1.2 Calculate $\alpha-\delta$, assuming them to be integers.
$M_{\mathrm{BaSO}_{4}}=233.39 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{Y}_{2} \mathrm{O}_{3}}=225.82 \mathrm{~g} \mathrm{~mol}^{-1}, M_{\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}}=249.61 \mathrm{~g} \mathrm{~mol}^{-1}$
$n=\frac{m}{M}$
$\rightarrow n_{\text {BaSO }_{4}}=3.02 \mathrm{mmol} \rightarrow 3.02 \mathrm{mmol} \mathrm{Ba}$
$\rightarrow n_{\mathrm{Y}_{2} \mathrm{O}_{3}}=0.75 \mathrm{mmol} \rightarrow 1.51 \mathrm{mmol} \mathrm{Y}$
$\rightarrow n_{\mathrm{CuSO}_{4}} \cdot 5 \mathrm{H}_{2} \mathrm{O}=4.53 \mathrm{mmol} \rightarrow 4.53 \mathrm{mmol} \mathrm{Cu}$
$1 \mathrm{~g}-m_{\text {tot.metal }}=0.163 \mathrm{~g} \rightarrow 10.20 \mathrm{mmol} \mathrm{O}$
From the respective n, we can deduce, that $Y: B a: C u=1: 2: 3$. As for O , we obtain
6.75. However, we know that $\epsilon=0.25$, therefore we round up to 7 .
$\alpha=1, \beta=2, \gamma=3, \delta=7$
5.0 pts total. 0.5 pts for each correct coefficient. 3.0 pts for the calculations.
1.3 Note the number of each atom type per unit cell. Assign the colours to each of 2.5 pt the elements (Y, Ba, Cu, O).
There are $1 \mathrm{Y}, 2 \mathrm{Ba}, 3 \mathrm{Cu}$ and 7 O per unit cell.
Y is blue. Ba is pink. Cu is orange. O is yellow.
2.5 pts total. 0.5pts for the correct amount of atoms per unit cell. 0.5pts for each correct assignment.
1.4 Calculate the density of the YBCO crystal in $\mathrm{g} \mathrm{cm}^{-3}$, assuming $\epsilon=0.25$.
4.0pt
$V_{\text {cell }}=3.82 \AA \cdot 3.89 \AA \cdot 11.68 \AA=173.6 \AA^{3}=1.736 \times 10^{-22} \mathrm{~cm}^{3}$
$M_{c e l l}=N_{A} \cdot\left(M_{Y} \cdot \alpha+M_{B a} \cdot \beta+M_{C u} \cdot \gamma+M_{O} \cdot(\delta-\epsilon)\right)=662.20 \mathrm{~g} \mathrm{~mol}^{-1}$
$m_{\text {cell }}=M_{\text {cell }} / N_{A}=1.10 \times 10^{-21} \mathrm{~g}$
$\rho=\frac{m_{\text {cell }}}{V_{\text {cell }}}=\frac{1.10 \times 10^{-21} \mathrm{~g}}{1.736 \times 10^{-22} \mathrm{~cm}^{3}}=6.336 \mathrm{~g} \mathrm{~cm}^{-3}$
4.0pts total. 1.0pt for each calculation.
1.5 Write a balanced chemical equation for this reaction $(\epsilon=0.25)$.
$4 \mathrm{Y}_{2}\left(\mathrm{CO}_{3}\right)_{3}+16 \mathrm{BaCO}_{3}+24 \mathrm{CuCO}_{3}+\mathrm{O}_{2} \longrightarrow 8 \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6.75}+52 \mathrm{CO}_{2}$
1.0pt total.

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
olympiades de chimie
OLIMPIADI DELLA CHIMICA
1.6 Assign each metallic ion in solution a colour and propose a reason as to why 1.0pt some of them lack colour.
Y^{3+} : colourless, Ba^{2+} : colourless, $\left[\mathrm{Cu}^{2+}\left(\mathrm{OH}_{2}\right)_{6}\right]$: blue
Y^{3+} and Ba^{2+} both lack colour as they do not have any possible electronic transitions.
1.0pt total. 0.5 pts for all colours and all reasons each.

Equilibria of Lime Scale Formation in Hard Water (15.0 points)

Students will have to make assumptions throughout this problem. If they are sensible, mark accordingly.

$$
\begin{aligned}
& \text { 2.1 Determine if such a concentration of } \mathrm{Ca}(\mathrm{OH})_{2} \text { is theoretically possible under } \\
& \text { standard conditions. Also calculate the initial pH and pOH of this solution. } \\
& \text { Assumption: Autoprotonation of water can be neglected in such high concen- } \\
& \text { trations. }
\end{aligned}
$$

At $20^{\circ} \mathrm{C}$ the solubility product $K_{s p}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $5.02 \times 10^{-6} \mathrm{~mol}^{3} \mathrm{~L}^{-3}=\left[\mathrm{Ca}^{2+}\right]$. $\left[\mathrm{OH}^{-}\right]^{2}=\left[\mathrm{Ca}^{2+}\right] \cdot\left(2\left[\mathrm{Ca}^{2+}\right]\right)^{2}$.
Solving for $\left[\mathrm{Ca}^{2+}\right]$, we get that $\left[\mathrm{Ca}^{2+}\right]=\sqrt[3]{\frac{K_{s}}{4}}=0.1079 \mathrm{~mol} \mathrm{~L}^{-1}>0.01 \mathrm{~mol} \mathrm{~L}{ }^{-1}$. Therefore, our solution of calcium hydroxide contains less calcium than is maximally possible, and it will not precipitate.
OR
Starting from $\left[\mathrm{Ca}^{2+}\right] \cdot\left(2\left[\mathrm{Ca}^{2+}\right]\right)^{2}$, if we plug in $0.01 \mathrm{molL}^{-1}$, we get $4.0 \times 10^{-6} \mathrm{~mol}^{3} \mathrm{~L}^{-3}<5.02 \times 10^{-6} \mathrm{~mol}^{3} \mathrm{~L}^{-3}$. Therefore, such a concentration is feasible.
$\mathrm{pOH}=-\log \left(\left[\mathrm{OH}^{-}\right]\right)=-\log (0.02)=1.70$, meaning $\mathrm{pH}=12.30$.
2.5pts total. 2.0pts for the calculation of solubility. 0.5 pts for the calculation of pOH and pH .
2.2 Formulate a balanced chemical equation for the reaction of lime with carbonic acid - as it can occur during the decomposition of lime-containing rock. Give an explanation why the product is easily dissolved away.
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
Because of the lower charge on $\mathrm{HCO}_{3}{ }^{-}$, the Coulomb interactions between cation and anion(s) are weaker, therefore leading to a more soluble salt.
1.0pt total. 0.5 pts for the equation. $0.5 p t s$ for the explanation.
2.3 Calculate the molar amount of CO_{2} that would theoretically have to be introduced into 0.5 L of our solution for maximum precipitation of lime. Argue why the $\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{CO}_{3}$ equilibrium is irrelevant in this reaction.
Assumptions: Protonation of OH^{-}is irreversible in water. $\mathrm{CO}_{3}{ }^{2-}$ is only protonated by $\mathrm{H}_{2} \mathrm{CO}_{3}$ and any protonation from water can be neglected.
0.5 L of a $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions means that there are 0.005 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ in solution.
$2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{3}{ }^{2-}$. As there are $0.01 \mathrm{~mol} \mathrm{OH}^{-}$, and carbonic acid is diprotic, exactly $0.005 \mathrm{~mol}_{2} \mathrm{CO}_{3}$ are needed.

The hydration equilibrium can be neglected, as the protonation of OH^{-}can be seen as irreversible, meaning the equilibrium will eventually shift to the right side no matter what.
Also, this is the maximum precipitation as the introduction of any more CO_{2}, would once again start creating $\mathrm{HCO}_{3}{ }^{-}$.
1.5pts total. 1.0pt for the calculation. 0.5pts for the correct reasoning.
2.4 Calculate both the maximum concentration of CO_{2} at $20^{\circ} \mathrm{C}$ and the pH of such a solution (applying the Erlenmeyer rule).
Assumption: Hydrogen carbonate is such a weak acid, its deprotonation can be neglected.
Solubility of CO_{2} is $1.7 \mathrm{~g} \mathrm{~L}^{-1}$, meaning that a saturated solution has a concentration of $\frac{1.7 \mathrm{~g} \mathrm{~L}^{-1}}{44 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0386 \mathrm{~mol} \mathrm{~L}^{-1}$.
Applying the Erlenmeyer rule, 1% of that (i.e. $3.86 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$) is the concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$.
Applying the formula for pH values of weak acids, we get that $\mathrm{pH}=$ $\frac{6.46-\log \left(3.86 \cdot 10^{-4}\right)}{2}=4.94$.
1.5pts total. 1.0pt for the calculation of concentration. 0.5 pts for the correct pH .
2.5 Calculate the pH of the remaining solution.

Assumptions: $\mathrm{CO}_{3}{ }^{2-}$ is only protonated by $\mathrm{H}_{2} \mathrm{CO}_{3}$ and any protonation from water can be neglected. Only carbonate is formed. Hydrogen carbonate is such a weak acid, its deprotonation can be neglected.

Assuming that only $\mathrm{CO}_{3}{ }^{2-}$ is formed, we get that $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}+$ $\mathrm{H}_{2} \mathrm{O}$. We also neglect any water formed in the reaction in the new volume of water.
$n_{\mathrm{CO}_{2} \text { new }}=n_{\mathrm{CO}_{2} \text { old }}-n_{\mathrm{Ca}(\mathrm{OH})_{2}}=7.73 \mathrm{mmol}-5 \mathrm{mmol}=2.72 \mathrm{mmol}$ of CO_{2} are now in solution.
Applying Erlenmeyer's rule, we get a $\frac{2.72 \mathrm{mmol} \cdot 0.01}{0.7 \mathrm{~L}}=3.90 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{-}$ solution.
$\mathrm{pH}=\frac{6.46-\log \left(3.90 \cdot 10^{-5}\right)}{2}=5.43$
2.5pts total. 1.5pts for the new concentration of CO_{2}. 0.5 pts for the new concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$. 0.5 pts for the pH of the solution.

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
2.6 Determine the mass of lime precipitated in the reaction.

Assumptions: Water does not play a role as base/acid. $\Delta p K_{a}$ between carbonate and carbonic acid is great enough to see the formation of hydrogen carbonate as taking place fully. Lime is insoluble in water. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ is fully soluble in water.

Starting from the previous solution, we have $2.72 \mathrm{mmol} \mathrm{CO}_{2}$ in 0.7 L of water as well as 0.005 mol of preciptated lime. The CO_{2} will now react fully with any lime to form soluble $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$.
$n_{\text {lime.new }}=n_{\text {lime.old }}-n_{\mathrm{CO}_{2} \text { remaining }}=0.005 \mathrm{~mol}-0.00272 \mathrm{~mol}=0.00227 \mathrm{~mol}$
$m=n \cdot M=0.00227 \mathrm{~mol} \cdot 100.09 \mathrm{~g} \mathrm{~mol}^{-1}=0.227 \mathrm{~g}$
3.0pts total. 1.5pts for the calculation of remaining lime. 1.5pts for the correct mass precipitated.
2.7 Draw the $\left[\mathrm{Ca}^{2+}\right]$ concentration of our initial solution as a function added CO_{2}, 3.0pt labelling all major Ca^{2+} salts (dissolved or precipitated) at their respective intervals of occurrence.

3.0pts total. 1.5pts for the curve. 1.5pts for the major species.

Thermodynamics in a Car Engine (15.0 points)

3.1 Write the reaction equation for the formation of the simplest nitrogen oxide, $\quad 1.0 \mathrm{pt}$ drawing the complete Lewis formula of the product.

$$
\mathrm{O}_{2}+\mathrm{N}_{2} \rightleftharpoons 2: \mathrm{O}^{\circ}=\mathrm{N}^{\circ} .
$$

1.0pt total. 0.5pts for correct stoichiometry. 0.5pts for correct Lewis structure (radical on O also accepted).
3.2 Elaborate on why NO_{2} is more likely to dimerise than NO .
$\mathrm{N}_{2} \mathrm{O}_{4}$ is resonance-stabilised while this would not be the case for $\mathrm{N}_{2} \mathrm{O}_{2}$.
$0.5 p t s$ total.
3.3 Calculate the enthalpy change $\Delta_{r} H^{0}$ of the reaction described in 3.1 at $25^{\circ} \mathrm{C}$ and suggest how you need to change the temperature to decrease the yield of the product.
$2 H_{\mathrm{NO}}-\left(H_{\mathrm{O}_{2}}+H_{\mathrm{N}_{2}}\right)=2.90 \mathrm{~kJ} \mathrm{~mol}^{-1}-\left(0 \mathrm{~kJ} \mathrm{~mol}^{-1}+0 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=180 \mathrm{~kJ} \mathrm{~mol}^{-1}$. As this is an endothermic reaction, we can use Le Châtelier's principle and increase the temperature, shifting the equilibrium to the product side.
1.0pt total. 0.5 pts for the enthalpy change. 0.5 pts for the correct reasoning.
3.4 Calculate the entropy change ΔS^{0} for the reaction taking place under 3.1. 0.5 pt
$2 \cdot S_{\mathrm{NO}}-\left(S_{\mathrm{O}_{2}}+S_{\mathrm{N}_{2}}\right)=2 \cdot 211 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}-\left(192 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}+205 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)=$ $25 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
$0.5 p t s$ total.
3.5 Determine the equilibrium constant K_{p} of the formation of NO at $25^{\circ} \mathrm{C}$. 2.0pt
$\Delta G=\Delta H-T \cdot \Delta S=172.55 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $T=298.15 \mathrm{~K}$.
$\Delta G=-R T \ln \left(K_{p}\right)$, therefore $K_{p}=e^{-\frac{\Delta C}{R T}}=5.88 \cdot 10^{-31}$.
2.0pts total. 1.0pt for ΔG. 1.0pt for K_{p}.

SwissChO Final Exam 2023 SOLUTIONS

3.6 Calculate both the new enthalpy change $\Delta_{r} H$ and the new K_{p} under these 3.0pt conditions.
Kirchhoff's law states that $\Delta H_{T_{1}}=\Delta H_{T_{2}}+\Delta C_{p} \cdot \Delta T$, if C_{p} is independent of T.
$\Delta C_{p}=2 C_{p}(\mathrm{NO})-\left(C_{p}\left(\mathrm{O}_{2}\right)+C_{p}\left(\mathrm{~N}_{2}\right)\right)=1.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
Therefore: $\Delta H_{2173}=\Delta H_{298}+\Delta C_{p} \cdot \Delta T=180 \mathrm{~kJ} \mathrm{~mol}^{-1}+1.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot 1875 \mathrm{~K}=$ $182.25 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta G_{2173}=\Delta H_{2173}-T \cdot \Delta_{S}=127.92 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$K_{p}(2173)=8.41 \cdot 10^{-4}$.
3.0pts total. 2.0pts for ΔH_{2173}. 1.0pt for ΔG and K.
3.7 Calculate the partial pressures $p_{c}()$ of nitrogen and oxygen in the cylinder after combustion, but before any nitrogen oxide is formed.
Initally, there the container was filled with 450 mL of atomospheric air. $V_{0}\left(\mathrm{~N}_{2}\right)=$ $0.8 \cdot 450 \mathrm{~mL}=360 \mathrm{~mL}, V_{0}\left(\mathrm{O}_{2}\right)=0.2 \cdot 450 \mathrm{~mL}=90 \mathrm{~mL}$.
Applying $n=\frac{p V}{R T}=\frac{1 \times 10^{5} \mathrm{PaV}_{\text {gas }}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} 298.15 \mathrm{~K}}$
$\rightarrow n_{\mathrm{N}_{2}}=0.0145 \mathrm{~mol}$
$\rightarrow n_{\mathrm{O}_{2}}=0.0036 \mathrm{~mol}$
Applying $p=\frac{n R T}{V}=\frac{n 8.314 \mathrm{JK} \mathrm{K}^{-1} \mathrm{~mol}^{-1} 2137.15 \mathrm{~K}}{0.5 \times 10^{-3} \mathrm{~m}^{3}}$. Note that the volume is now 500 mL , as the liquid has turned into a gas as well. Also, half of all oxygen was consumed in the combustion.
$\rightarrow p_{c}\left(\mathrm{~N}_{2}\right)=5.2481 \times 10^{5} \mathrm{~Pa}$
$\rightarrow p_{c}\left(\mathrm{O}_{2}\right)=6.560 \times 10^{4} \mathrm{~Pa}$
2.0pts total. 0.5 pts for each calculation. 0.5 pts for each correct result.

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
3.8 Calculate the mass of nitrogen oxide that can be expected to be produced per
5.0pt combustion. Note: If you could not determine K_{p} in 3.6, you may use the approximation $K_{p}^{\prime}=1.0 \times 10^{-3}$.
We know that $K_{p}=\frac{p\left(\mathrm{NO}^{2}\right.}{p\left(\mathrm{~N}_{2}\right) p\left(\mathrm{O}_{2}\right)}=8.41 \times 10^{-4}$.
And because $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$, it follows that:
$K_{p}=\frac{(2 x)^{2}}{\left(p_{c}\left(\mathrm{~N}_{2}\right)-x\right)\left(p_{c}\left(\mathrm{O}_{2}\right)-x\right)}$, where x is the amount of oxygen (or nitrogen) consumed.

Algebraic manipulation leads to

$$
(4-K) x^{2}+x K\left(p_{c}\left(\mathbf{O}_{2}\right)+p_{c}\left(\mathbf{N}_{2}\right)\right)-K p_{c}\left(\mathbf{N}_{2}\right) p_{c}\left(\mathbf{O}_{2}\right)=0
$$

Let $a=(4-K), b=K\left(p_{c}\left(\mathrm{O}_{2}\right)+p_{c}\left(\mathrm{~N}_{2}\right)\right)$ and $c=-K p_{c}\left(\mathrm{~N}_{2}\right) p_{c}\left(\mathrm{O}_{2}\right)$, then

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}=2629.28 \mathrm{~Pa}
$$

$p(\mathrm{NO})=2 x=5258.56 \mathrm{~Pa}$
Applying the ideal gas law, we get
$n_{\text {NO }}=1.455 \times 10^{-4} \mathrm{~mol}$, which corresponds to 4.37 mg .
IF K_{p}^{\prime} WAS USED
$x=2861.16$ Pa and $n_{\text {NO }}=1.584 \mathrm{~mol}$ and $m_{\text {NO }}=4.75 \mathrm{mg}$
5.Opts total. 1.0pt for the expression of K with x. 1.0pt for the quadratic. 1.5pts for solving the quadratic. 1.0pt for the correct n_{NO}. 0.5 pts for the correct mass.

SwissChO Final Exam 2023 SOLUTIONS

Electrochemistry of Chromium (14.0 points)

4.1 Calculate the missing potentials a-d.
$\mathrm{a}=0.56 \mathrm{~V}, \mathrm{~b}=1.34 \mathrm{~V}, \mathrm{c}=1.33 \mathrm{~V}, \mathrm{~d}=-0.74 \mathrm{~V}$
2.0pts total. 0.5 pts for each correct value.
4.2 Determine, for the calculated potentials, whether the corresponding reduc-
1.0pt tions are exergonic or endergonic.
All positive potentials are exergonic and vice versa, meaning all of them are exergonic - except for d.
1.0pt total.
4.3 Draw a complete Frost diagram of Cr in acidic solution, adding the missing
1.5pt point $\mathrm{Cr}(\mathrm{IV})$.

1.5pts total. 1.0 pt for the correct point in the diagram. $0.5 p t$ for labelling all axes and points correctly.

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
4.4 Elaborate on the thermodynamic stability of $\mathrm{Cr}(\mathrm{II})$ and $\mathrm{Cr}(\mathrm{VI})$ and provide 3.0pt whether these oxidation states can be produced as a result of a disproportionation.
In acidc solution:
Neither of the two oxidation states are stable, as the lowest point is Cr^{3+}. $\mathrm{Cr}(\mathrm{II})$ cannot be produced in a disproportionation. $\mathrm{Cr}(\mathrm{VI})$ is produced in the disproportion of $\mathrm{Cr}(\mathrm{V})$.

In basic solution:
$\mathrm{Cr}(\mathrm{VI})$ is thermodynamically stable. It cannot be produced in a disproportionation reaction.
3.0pts total. 0.5 pts for each assessment of stability. $0.5 p t s$ for each correct assignment of (im)possibility of being produced in a disproportionation.
4.5 Calculate the standard cell potential of the comproportionation of Cr^{3+} and 1.5 pt another Cr -species to form $\mathrm{Cr}(\mathrm{II})$.
$\mathrm{Cr}+2 \mathrm{Cr}^{3+} \rightleftharpoons 3 \mathrm{Cr}^{2+}$
$\Delta E_{\text {cell }}=E_{\text {red }}-E_{\text {ox }}=-0.42 \mathrm{~V}--0.9 \mathrm{~V}=0.48 \mathrm{~V}$.
1.5pts total. 0.5pts for the correct chemical equation. 1.0pt for the correct cell potential.
4.6 Give a balanced half-reaction equation for the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ to Cr^{3+} in 1.0pt aqueous acidic solution.
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
1.0pt total.
4.7 Give an equation for the non-standard reduction potential of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ to Cr^{3+}, $\quad 4.0 \mathrm{pt}$ which is linearly dependent on pH at $25^{\circ} \mathrm{C}$.
The Nernst equation is utilised here.
At $25^{\circ} \mathrm{C}$, the Nernst equation can be written in with a decadic logarithm as follows

$$
E=E^{0}-\frac{0.059 \mathrm{~V}}{n} \cdot \log (Q)=1.33 \mathrm{~V}-\frac{0.059 \mathrm{~V}}{6} \cdot \log \left(\frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{H}^{+}\right]^{14}}\right)
$$

With $\left[\mathrm{H}^{+}\right]^{14}=10^{-14 p H}$, this gives $\log (Q)=\log \left(\frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2}\right] \cdot 10^{-14 p H}}\right)=$ $\log \left(\frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2+}\right]}\right)+\log \left(10^{14 p H}\right)$
Which gives

$$
E=1.33 \mathrm{~V}-\frac{0.059 \mathrm{~V}}{6}\left(\log \left(\frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]}\right)+14 p H\right)
$$

4.0pts total. 1.0pt for the nernst equation of the half equation. 1.0pt for the substution of $\left[\mathrm{H}^{+}\right]^{14}$. 1.0pt for "splitting" the log in two. 1.0pt for the final formula.

SwissChO Final Exam 2023 SOLUTIONS

Enzyme Kinetics (14.5 points)

5.1 State which parameter of a reaction is changed by the enzyme. In keywords, 1.0pt note what the change is.
The activation energy is lowered.
(0.5 pt for activation energy, 0.5 pt for decreased)
5.2 Write the differential rate laws for the following three concentrations: [S], [ES] 3.0pt and [P].

```
\(\frac{\mathrm{d}[\mathrm{S}]}{\mathrm{d} t}=-k_{1}[\mathrm{E}][\mathrm{S}]+k_{-1}[\mathrm{ES}]\)
\(\frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{dt}}=k_{1}[\mathrm{E}][\mathrm{S}]-k_{-1}[\mathrm{ES}]-k_{2}[\mathrm{ES}]\)
\(\frac{\mathrm{dPP}]}{\mathrm{d} t}=k_{2}[\mathrm{ES}]\)
1.0pt for each
```

5.3 Explain what change you expect for [ES], if the substrate concentration is in- 1.0pt creased.
[ES] increases for higher [S] (shifts equilibrium to side of [ES])
5.4 Applying the steady-state assumption for the enzyme-substrate complex, write 3.0pt the expression for [ES] based on the correct rate law that you found in task 5.2. E_{0} and ES should be the only enzyme-containing species in your final equation.
$\frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{d} t}=k_{1}[\mathrm{E}][\mathrm{S}]-k_{-1}[\mathrm{ES}]-k_{2}[\mathrm{ES}]=0$
$[\mathrm{E}]_{0}=[\mathrm{E}]+[\mathrm{ES}]$
$k_{1}[\mathrm{E}][\mathrm{S}]=\left(k_{-1}+k_{2}\right)[\mathrm{ES}]$
$k_{1}\left([\mathrm{E}]_{0}+[\mathrm{ES}]\right)[\mathrm{S}]=\left(k_{-1}+k_{2}\right)[\mathrm{ES}]$
$k_{1}[\mathrm{E}]_{0}[\mathrm{~S}]=\left(k_{-1}+k_{2}+k_{1}[\mathrm{~S}]\right)[\mathrm{ES}]$
$[\mathrm{ES}]=\frac{k_{1}[\mathrm{E}]_{0}[\mathrm{~S}]}{k_{-1}+k_{2}+k_{1}[\mathrm{~S}]}=\frac{[\mathrm{E}]_{[}[\mathrm{S}]}{\frac{k_{-1}+k_{2}}{k_{1}+[S]}}$
(0.5pt for correct implementation of steady state, 0.5 pts for $[E]_{0}=[E]+[E S]$, 1.0pt for correct rearrangement, 0.5 pt for correct simplification at end)
5.5 Rearrange the equation that you obtained in $\mathbf{5 . 4}$ so that you have an expression for v that does no longer depend on [ES].
$\frac{v}{v_{\text {max }}}=\frac{[E S]}{[E]_{0}}=\frac{\mid(S]}{\frac{k-1+k_{2}}{k_{1}}+[S]}$
$v=\frac{v_{\text {m }}[S]}{\frac{k_{1}+k_{k}+[S]}{k_{1}}+[S]}$
(0.5 pt for correct insertion into equation, 0.5 pt for correct rearrangement)

SwissChO Final Exam 2023 SOLUTIONS

5.6 Develop a simplified expression for K_{M} that only contains rate constants. Show 2.Opt your working.
$v=\frac{v_{\text {max }}[S]}{\frac{k-1+k}{k}+[S]}$
$\frac{v_{\text {max }}}{2}=\frac{v_{\text {max }} K_{\mathrm{M}}}{\frac{k_{1}-k_{1} k_{2}}{k_{1}}+K_{\mathrm{M}}}$
$\frac{k_{-1}+k_{2}}{k_{1}}+K_{\mathrm{M}}=2 K_{\mathrm{M}}$
$K_{\mathrm{M}}=\frac{k_{-1}+k_{2}}{k_{1}}$
(0.5pt for correct insertion into equation, 1.0pt for correct rearrangement)
5.7 Simplify the expression for v for the following three cases: 2.0pt
(i) $[\mathrm{S}] \gg K_{\mathrm{M}}$
(ii) $[\mathrm{S}]=K_{\mathrm{M}}$
(iii) $[\mathrm{S}] \ll K_{\mathrm{M}}$
(i) $v=\frac{\left[S \mid v_{\text {mix }}\right.}{K_{\mathrm{M}}+[\mathrm{S}]} \approx \frac{\left[\mathrm{S} \mid v_{\text {max }}\right.}{[\mathrm{S}]}=v_{\text {max }}$
(ii) $v=\frac{\mid S v_{\text {max }}}{K_{\mathrm{m}}+[\mid] \mid}=\frac{\mid S v_{\text {max }}}{2[S]}=\frac{v_{\text {max }}}{2}$
(iii) $v=\frac{|S| v_{\text {max }}}{K_{\mathrm{M}}+[\mathrm{S}]} \approx \frac{|\mathrm{S}| v_{\text {max }}}{K_{\mathrm{M}}}$
0.5 pt for correct insertion of K_{M} into equation for $v, 0.5 \mathrm{pt}$ for each result of (i) (iii)
5.8 For cases (i) and (ii) in task 5.7: Write the expression for the concentration of 1.5pt the enzyme-substrate complex as a function of the total enzyme concentration.
(i) $[\mathrm{ES}]=\frac{[\mathrm{E}]_{0}[\mathrm{~S}]}{K_{\mathrm{M}}+[\mathrm{S}]} \approx[\mathrm{E}]_{0}$
(ii) $[\mathrm{ES}]=\frac{[\mathrm{E}]_{0}[\mathrm{~S}]}{K_{\mathrm{M}}+[\mathrm{S}]}=\frac{[\mathrm{E}]_{0}[\mathrm{~S}]}{2[\mathrm{~S}]}=\frac{[\mathrm{E}]_{0}}{2}$
0.5 pt for use of correct equation, 0.5 pt for each result of (i) - (ii)

SwissChO Final Exam 2023 SOLUTIONS

The Diversity of Nickel (14.0 points)

6.1 Write down the forward reaction described above. Assign oxidation numbers 2.5pt to all atoms in the product.
$\mathrm{Ni}+4 \mathrm{CO} \longrightarrow\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\mathrm{Ni}^{0}, \mathrm{C}^{+1 \mathrm{II}}, \mathrm{O}^{-\mathrm{II}}$,
2.5pts total. 1.0pt for the equation. 0.5 pts for each oxidation state.
6.2 Elaborate on the thermodynamic driving force of the decomposition of com- 1.0pt plex \mathbf{C} at higher temperatures.
Entropy is the driving force. As T increases, the entropy term in $\Delta G=\Delta H-T \Delta S$ increases, driving the system to favour more particles.
1.Opt total.
6.3 Determine the number of d-electrons in these complexes.

As both are $\mathrm{Ni}^{+I I}$-complexes, they have a d^{8}-system.
1.Opt total.
6.4 Draw the orbital diagrams with all d-electrons of the metal centre of compounds A and B on your answer sheet, labelling all orbitals and using the same energy axis for both of the compounds.

3.0pts total. 1.5pts for the correct assignment of the compounds. 1.0pt for the correct "positions" of the electrons and orbital labels. 0.5 pts for the qualitatively correct energy differences.

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
6.5 Draw all possible structures of \mathbf{A} as well as \mathbf{B}. Establish all relations between 3.0pt the isomers (constitutional isomer, enantiomer, diastereomer...).

3.0pts total. 0.5 pts for each correct structure. 0.5pts for each correct relationship.
6.6 Elaborate on whether you would assume the colour of \mathbf{B} to be closer to blue or red, compared to \mathbf{A}.
The colour of \mathbf{B} is closer to blue, as the transition in a tetrahedral complex requires less energy, compared to a square-planar complex. This results in the absorption of red light, leading to a blue colouration.
1.5 pts total. 0.5 pts for the correct colour. 1.0pt for the correct reasoning.
6.7 Give a reason for why $\left[\mathrm{Ni}\left(\mathrm{PPh}_{2} \mathrm{Bn}\right)_{2}(\mathrm{CN})_{2}\right]$ only exists in a single isomer.

Strong-splitting ligands favour square-planar complexes. When Cl^{-}was weak and $\mathrm{PPh}_{2} \mathrm{Bn}$ was somewhat strong, it was on the verge, and thus both forms exist. Now that CN^{-}is very strong and $\mathrm{PPh}_{2} \mathrm{Bn}$ still somewhat strong, it's strong splitting and thus squre-planar.
1.0pt total.
6.8 Judging on the colour of A, make an educated guess about the colour of $\left[\mathrm{Ni}\left(\mathrm{PPh}_{2} \mathrm{Bn}\right)_{2}(\mathrm{CN})_{2}\right]$.
A is red, which means it absorbs "green" photons. By increasing the field splitting, even higher-energy photons will be required for the electronic transitions. These are either fall out of the visible spectrum, making the new complex colourless (absorbent in UV) or they absorb just in the blue spectrum, making the new complex orange.
1.Opt total.

Biomolecules - Carbohydrates and Peptides (14.0 points)

7.1 Calculate how many stereoisomers of aldohexoses exist?
1.0pt

4 stereocentres -> $2^{4}=16$ stereoisomers
7.2 Draw the product \mathbf{A} of the reaction shown below.

7.3 Explain the optical activity of xylaric acid. State how such a compound is called. 1.5 pt The compound has an internal reflection plane and is thus symmetrical. A symmetrical structure is optically inactive.
Such a compound is said to be meso.
(1.0pt for correct explanation, 0.5pts for correct term)
7.4 Below, you can see the structure of D-erythrose. Copy the structure on your answer sheet and draw all stereoisomers. Note the relationships (enantiomer, diastereomer) between all combinations of two structures.

(1.5pts total for stereoisomers:
0.5pts per correct isomer (no points for copying the first from task), -0.5pts per wrong additional isomer, not lower than Opts for stereoisomers;
2.0pts total for relationships:
0.5 pts per correct relationship (up to a max. of 2.0 pts), -0.5 pts per wrongly assigned relationship, no deduction for wrong isomers that have already gotten a penalty, not lower than Opts for relationships)

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
7.5 Draw the intermediate \mathbf{A} and compound \mathbf{B} for the Staudinger ligation.
1.5pt

(1.0pt for $\mathbf{A}, 0.5$ pts for \mathbf{B})
7.6 Draw intermediate C, compound D and product E of the traceless Staudinger 3.0pt ligation.

1.0pt for each C, D, E
7.7 Draw compound \mathbf{F}, intermediate \mathbf{G} and product \mathbf{H} of the native chemical liga- 2.5 pt tion.

(0.5pts for $\mathbf{F}, 1.0 \mathrm{pt}$ for $\mathbf{G}, 1.0 \mathrm{pt}$ for \mathbf{H})

Analysis of an Unknown Compound (15.5 points)

8.1 Of the two U-tubes, one contains sodium hydroxide solution and the other con-

NaOH solution: absorbs carbon dioxide
CaCl_{2} : absorbs water
1 is $\mathrm{CaCl}_{2}, 2$ is NaOH , since second tube contains aqueous solution, water cannot be determined after that
(0.5pts for use of each tube, 0.5pts for explanation of order)
8.2 You now have ammonia in an alkaline aqueous solution, however you do not know the exact amounts of sulfuric acid or sodium hydroxide solution that you have used in your experiment. Describe a procedure to quantify the ammonia. Distill ammonia into an acidic solution of known concentration. Titrate the remaining acid with a base.
(OR)
Distill ammonia into water. Titrate ammonia with an acid.
(OR)
other individual solution?
8.3 Calculate the number of double bond equivalents.
$9 \mathrm{C}, 11 \mathrm{H}, 1 \mathrm{~N}$
$D B E=\mathrm{C}-\frac{\mathrm{H}}{2}+\frac{\mathrm{N}}{2}=9-\frac{11}{2}+\frac{1}{2}=4$
8.4 Note what causes this vibration.
0.5 pt
$\mathrm{C}==\mathrm{O}$ stretching vibration
8.5 What is the substitution pattern on the aromatic ring? Choose one of the five
1.5pt patterns below. Explain your choice.

A

B

C

D

E

C (or para).

- signal from four protons
- each proton couples to one other proton (OR) two doublets -> must be symmetrical structure
(0.5pts for correct choice, 1.0pt for correct explanation)

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
8.6 Considering peak D : This signal comes from one or more protons bound to a 1.0 pt single atom. Give the element of this atom. Comment on the peak width. Nitrogen
The peak is broadened because the protons are exchangeable.
(0.5pts for correct choice of atom, 0.5 pts for correct explanation)
8.7 Considering peak E: Give the letter of the other peak to which this/ these pro- 1.0pt ton(s) couple to? Explain your answer.
E couples to C.
E is a triplet and thus couples to 2 protons. C is a quartet and thus couples to 3 protons.
(0.5pts for correct choice of peak, 0.5 pts for correct explanation)
8.8 In which of the following forms is the nitrogen atom present? Choose one of the following: amide, amine or nitro group. Explain your choice.
Amine. We have identified before that signal D is from two protons on a nitrogen atom, we can therefore exclude a nitro group. The shift ($<5 \mathrm{ppm}$) tells us that it is an amine.
(0.5pts for correct functional group, 1.0pt for correct explanation)
8.9 From the chemical shift of peak C, you see that the carbon atom carrying this/ these proton(s) is connected to a heteroatom. Explain what influence you expect on the proton chemical shift due to a heteroatom in this position. Decide what element the heteroatom is.
A heteroatom next to the carbon carrying the protons will increase the chemical shift of these protons. Heteroatom is oxygen.
(1.0pt for correct explanation, 0.5 pts for correct choice of heteroatom)
8.10 Draw all fragments that you could identify so far. If there are remaining atoms, 2.0 pt list them too.

If the amine is already connected to the benzene ring -> also fine (0.5pts per fragment)

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMII
OLIMPIADI DELLA CHIMICA
8.11 Draw the final compound based on the fragments that you listed in 8.10 and $1.0 p t$ using all the information you got from solving tasks 8.3 to 8.9.

As can been found out from 8.6 and 8.8, the nitrogen must be connected to one carbon and not be an amide $\rightarrow \mathrm{N}$ must be bound to aromatic ring. Only one way to connect the remaining fragments. (NO explanation necessary for full points)
8.12 Note what causes the peak at 7.26 ppm .
0.5 pt
CHCl_{3}
(OR)
remaining undeuterated solvent
8.13 Note what causes the peak at 0.00 ppm .

TMS
(OR)
reference

Playing with Cyclohexenone (14.0 points)

9.1 Draw the structure of all products A-I and G. Draw the major product if there 8.0pt are multiple.

A

E

B

C

G

D
8.0pts total. 1.0pts for each correct structure.
9.2 Draw the structure of \mathbf{H} and its tautomer \mathbf{H}^{*}.

1.0pt total. $0.5 p t s$ for the each structure.
9.3 Suggest suitable reagents for transformations $1-4$, that give the desired prod- 2.0 pt ucts.

1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
2) $\mathrm{H}_{2} \mathrm{O}$
3) H^{+}(cat.)
4) $1 . \mathrm{O}_{3},\left(\mathrm{DCM},-78^{\circ} \mathrm{C}\right) 2 \cdot \mathrm{H}_{2} \mathrm{O}_{2}$
2.0pts total. 0.5 pts for each correct reaction condition.
9.4 Draw the structure of X and correctly name the reaction taking place.

Aldol condensation.
1.5pts total. 1.0 pt for the correct structure. 0.5 pts for the name of the reaction.

SwissChO Final Exam 2023 SOLUTIONS

CHEMISTRY.
OLYMPIAD.CH
CHEMIE-OLYMPIADE
OLYMPIADES DE CHIMIE
OLIMPIADI DELLA CHIMICA
9.5 Give the IUPAC-name of one of these compounds and suggest a path to convert 1.5pt it to X.
There are three possible solutions to this problem.
a) Hexanedioic acid

1) LiAlH_{4} or NaBH_{4} or any suitable reducing agent. 2) PCC, Swern oxidation, or other oxidation going selectively to aldehyde.
No full marks if oxidation is done too harshly, i.e. KMnO_{4}.
b) Cyclohexene
2) $\left.\mathrm{O}_{3}\left(\mathrm{DCM},-78^{\circ} \mathrm{C}\right) 2\right) \mathrm{Me}_{2} \mathrm{~S}$
c) Cyclohexane-1,2-diol
3) NaIO_{4}
1.5pts total. 0.5 pts for the name. 1.0pt for the reaction conditions. No further points if multiple pathways are suggested.

SwissChO Final Exam 2023 SOLUTIONS

Total Synthesis of Cidofovir (16.0 points)

10.1 Draw all structures A-C with all necessary stereochemical information given. 3.0pt Note: One equivalent of $\mathbf{3}$ will yield two equivalents of \mathbf{A}.

3.0pts total. 1.0pt for each correct structure.
10.2 Propose conditions for the transformation under a.

Acetone, H^{+}
1.5pts total. - 0.5 pts if base is suggested instead of acid, as this will only form the hemiketal.
10.3 Draw all stereoisomers of 2 that could also be used to reach product 4 2.0pt

2.0pts total.
10.4 Name two reasons for why the steps from B to C and C to 4 must be performed 2.0pt in that order.

1) Non-selective benzylation of the alcohol.
2) It would give the racemate.
2.0pts total.
10.5 Draw the structures of compounds $\mathbf{D}, \mathbf{F}, \mathbf{G}$ as well as intermediate \mathbf{E} with correct 4.0pt stereochemistry.

D

E

G
4.0pts total. 1.0pt for each correct structure.

SwissChO Final Exam 2023 SOLUTIONS

1.5pts total. 1.0pt for the MsCl. 0.5pts for the base.
10.7 Give the name of the reaction occurring between \mathbf{G} and $\mathbf{1}$. What purpose did $2.0 p t$ the fragment lost in this reaction serve?
Hydrogenation (deprotection).
The Bn was a protecting group.
2.0pts total. 1.0pt for the reaction name (0.5 if only "deprotection"). 1.0pt for the purpose.

