Challenge 3, Waves and Oscillations: Solution

Pendulum in the capacitor

In this task we investigate the behaviour of a pendulum in an electric field. For this purpose we consider an (ideal) plate capacitor with plate area $A=$ $1 \mathrm{~m}^{2}$ and distance $d=20 \mathrm{~cm}$ and a small sphere with mass $m=5 \mathrm{~g}$, which is suspended from a thread of length $l=10 \mathrm{~cm}$.

Part A. Electric field

i. Calculate the capacitance C of the capacitor.

We have

$$
C=\varepsilon_{0} \frac{A}{d}
$$

The numerical result is $C=44.27 \mathrm{pF}$.
ii. What is the voltage and electric field when the charge $Q= \pm 2 \mu \mathrm{C}$ resides on the capacitor plates?

We have

$$
U=\frac{Q}{C}
$$

and therefore

$$
E=\frac{U}{d}
$$

the numerical results are

$$
U=44.52 \mathrm{kV} \text { and } E=226 \mathrm{kV} \cdot \mathrm{~m}^{-1}
$$

(0.5 points each)

Part B. Oscillation
1 pt.
11 pt .
If you could not solve the previous tasks, use an electric field of $E=2.26 \mathrm{MV}$. m^{-1} for the following tasks.
i. In the middle of the condenser, whose plates are parallel to the yz -plane (i.e. perpendicular to gravity), we now place our pendulum. The sphere is charged with $q=200 \mathrm{nC}$. Sketch which forces act on the sphere and the resulting force.

2 pt.

Figure 1:

For the electrical force.
0.5 pt.

For the gravititional force.
0.5 pt.

For the force in the pendulum.
0.5 pt.

For the resulting force.
0.5 pt .
ii. What angle does the pendulum assume with the vertical when at rest?

In x-direction we have the electrical force $F_{e l}=q E$ and in z direction the gravitational force $F_{g}=m g$

Therefore we get the angle

$$
\theta=\arctan \left(\frac{F_{e l}}{F_{g}}\right)
$$

The numerical result is $\theta=83.8^{\circ}$ (for $E=2.26 \mathrm{MV} \cdot \mathrm{m}^{-1}$) or $\theta=42.65^{\circ}$ (for $E=$ $226 \mathrm{kV} \cdot \mathrm{m}^{-1}$).
iii. If the pendulum is deflected by a small angle from this rest position, it will perform an (approximately harmonic) oscillation. Calculate the frequency of this oscillation! Note: For $x \ll 1 \sin x \approx x$ holds.

At every point we have the same force $F_{e l+g}=\sqrt{F_{e l}^{2}+F_{g}^{2}}$ acting on the charge under an the angle θ, which we calculated above. Around the equilbrium point the force becomes

$$
F_{r}=-F_{e l+g} \sin (\phi)
$$

where ϕ deflection from equilbrium.
We make a Taylor approximation for small ϕ

$$
F_{r} \approx-F_{e l+g} \phi
$$

We get the equation of motion

$$
m l \ddot{\phi}=-F_{e l+g} \phi
$$

and therefore

$$
\ddot{\phi}=-\frac{F_{e l+g}}{m l} \phi
$$

From $\ddot{\phi}=-\omega^{2} \phi$ we can identify

$$
\omega=\sqrt{\frac{F_{e l+g}}{m l}}
$$

With $\omega=2 \pi f$

1 pt.
0.5 pt .
the frequency becomes

$$
f=\frac{1}{2 \pi \sqrt{m l}}\left((q E)^{2}+(m g)^{2}\right)^{1 / 4}=\frac{1}{2 \pi \sqrt{m l}}\left(\left(\frac{q Q}{\epsilon_{0} A}\right)^{2}+(m g)^{2}\right)^{1 / 4}
$$

The numerical value of f is 4.8 Hz (for $E=2.26 \mathrm{MV} \cdot \mathrm{m}^{-1}$) or 1.838 Hz (for $E=$ $226 \mathrm{kV} \cdot \mathrm{m}^{-1}$)
iv. How does the frequency of the oscillation change if the voltage of the capacitor is kept constant and the distance between the plates is increased by $\Delta d=5 \mathrm{~cm}$?

The charge changes by

$$
Q^{\prime}=Q \frac{d}{d+\Delta d}
$$

Therefore we can use the formula

$$
f=\frac{1}{2 \pi \sqrt{m l}}\left(\left(\frac{q Q}{\epsilon_{0} A}\right)^{2}+(m g)^{2}\right)^{1 / 4}
$$

again.
The numerical value is $f=4.3 \mathrm{~Hz}$ (for $E=2.26 \mathrm{MV} \cdot \mathrm{m}^{-1}$) or $f=1.757 \mathrm{~Hz}$ (for $E=226 \mathrm{kV} \cdot \mathrm{m}^{-1}$)

