2 pt.

Challenge 3, Waves and Oscillations: Solution

Pendulum in the capacitor	14 pt.
In this task we investigate the behaviour of a pendulum in an electric field. For this purpose we consider an (ideal) plate capacitor with plate area $A = 1 \text{ m}^2$ and distance $d = 20 \text{ cm}$ and a small sphere with mass $m = 5 \text{ g}$, which is suspended from a thread of length $l = 10 \text{ cm}$.	
Part A. Electric field	<u>3 pt.</u>
i. Calculate the capacitance C of the capacitor.	1 pt.
We have $C = \varepsilon_0 \frac{A}{d}$	
	0.5 pt.
The numerical result is $C = 44.27 \mathrm{pF}$.	0.5 pt.
ii. What is the voltage and electric field when the charge $Q = \pm 2 \mu\text{C}$ resides on the capacitor plates?	2 pt.
We have $U = \frac{Q}{C}$	
	0.5 pt.
and therefore $E = \frac{U}{d}$	
	0.5 pt.
the numerical results are	
$U = 44.52 \text{kV}$ and $E = 226 \text{kV} \cdot \text{m}^{-1}$	
(0.5 points each)	1 pt.
Part B. Oscillation	11 pt.
If you could not solve the previous tasks, use an electric field of $E=2.26{\rm MV}\cdot{\rm m}^{-1}$ for the following tasks.	
i. In the middle of the condenser, whose plates are parallel to the yz -plane	

1. In the middle of the condenser, whose plates are parallel to the yz -plane (i.e. perpendicular to gravity), we now place our pendulum. The sphere is charged with q = 200 nC. Sketch which forces act on the sphere and the resulting force.

Figure 1:

For the electrical force.	0.5 pt.
For the gravititional force.	0.5 pt.
For the force in the pendulum.	0.5 pt.
For the resulting force.	<u>0.5 pt.</u>
ii. What angle does the pendulum assume with the vertical when at rest?	2 pt.
In a direction we have the electrical force $F_{-} = aF$ and in a direction the gravitational	

In x-direction we have the electrical force $F_{el} = qE$ and in z direction the gravitational force $F_g = mg$ 0.5 pt.

Therefore we get the angle

$$\theta = \arctan\left(\frac{F_{el}}{F_g}\right)$$

The numerical result is $\theta = 83.8^{\circ}$ (for $E = 2.26 \,\mathrm{MV} \cdot \mathrm{m}^{-1}$) or $\theta = 42.65^{\circ}$ (for $E = 226 \,\mathrm{kV} \cdot \mathrm{m}^{-1}$).

iii. If the pendulum is deflected by a small angle from this rest position, it will perform an (approximately harmonic) oscillation. Calculate the frequency of this oscillation! Note: For $x \ll 1 \sin x \approx x$ holds. 5 pt.

At every point we have the same force $F_{el+g} = \sqrt{F_{el}^2 + F_g^2}$ acting on the charge under an the angle θ , which we calculated above. Around the equilbrium point the force becomes

$$F_r = -F_{el+g}\sin(\phi)$$

where ϕ deflection from equilbrium.

We make a Taylor approximation for small ϕ

$$F_r \approx -F_{el+g}\phi$$

We get the equation of motion

and therefore

$$\ddot{\phi} = -\frac{F_{el+g}}{ml}\phi$$

 $ml\ddot{\phi} = -F_{el+g}\phi$

1 pt.

From $\ddot{\phi} = -\omega^2 \phi$ we can identify

$$\omega = \sqrt{\frac{F_{el+g}}{ml}}$$

1 pt.

0.5 pt.

the frequency becomes

With $\omega = 2\pi f$

$$f = \frac{1}{2\pi\sqrt{ml}} \left((qE)^2 + (mg)^2 \right)^{1/4} = \frac{1}{2\pi\sqrt{ml}} \left(\left(\frac{qQ}{\epsilon_0 A} \right)^2 + (mg)^2 \right)^{1/4}$$
0.5 pt.

The numerical value of f is 4.8 Hz (for $E=2.26\,{\rm MV}\cdot{\rm m}^{-1})$ or 1.838 Hz (for $E=226\,{\rm kV}\cdot{\rm m}^{-1})$ 0.5 pt.

1 pt.

0.5 pt.

1 pt.

0.5 pt.

iv. How does the frequency of the oscillation change if the voltage of the capacitor is kept constant and the distance between the plates is increased by $\Delta d = 5 \,\mathrm{cm}$?

The charge changes by

$$Q' = Q \frac{d}{d + \Delta d}$$

Therefore we can use the formula

$$f = \frac{1}{2\pi\sqrt{ml}} \left(\left(\frac{qQ}{\epsilon_0 A}\right)^2 + (mg)^2 \right)^{1/4}$$

again.

The numerical value is $f = 4.3 \,\mathrm{Hz}$ (for $E = 2.26 \,\mathrm{MV} \cdot \mathrm{m}^{-1}$) or $f = 1.757 \,\mathrm{Hz}$ (for $E = 226 \,\mathrm{kV} \cdot \mathrm{m}^{-1})$ 0.5 pt.

2 pt.

1 pt.

0.5 pt.