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Problème 1 : Gaz de photons (16 points)
i. (3 pts) The diagrams are shown below. The dia-
grams should be appropriately labelled. The stu-
dents are expected to notice that the isothermal
processes are also isobaric, as follows from the rela-
tion between the pressure and temperature stated
in the problem. Hence, processes 2 and 4 should be
represented as horizontal lines in the p-V diagram.

Entropy is constant during an adiabatic pro-
ceess such that the T -S diagram should show a
rectangle.

Fig. 1 – PV

Fig. 2 – ST

Grading : -0.25 pts per axis label missing,
there is 0.25 pts per part of the cycle correct (2
cycle with 4 parts = 2 pts), plus bonus 0.5 pts if
a whole cycle is complete (2 cycles = 1 pts)

ii. (2 pts) There is no heat flowing into the gas
during an adiabatic process, i.e.,

∆Q1 = ∆Q3 = 0. (1)

Grading : 0.25 per ∆Q = 0.5 pts
For the isothermal processes, we have accor-

ding to the first law of thermodynamics

∆Q = ∆U +

∫
pdV (2)

Grading : 0.5 pts
where ∆U denotes the change in internal

energy. Since both pressure and energy density are
constant, this expression may be written as

∆Q = (u+ p)∆V. (3)

Grading : 0.5 pts
Hence

∆Q2 =
16σT 4

2

3c
(V3 − V2) (4)

∆Q4 =
16σT 4

1

3c
(V1 − V4). (5)

Grading : 0.25 per ∆Q = 0.5 pts
iii. (2 pts) The entropy is unchanged during an
adiabatic process such that

∆S1 = ∆S3 = 0. (6)

Grading : 0.25 per ∆S = 0.5 pts
More generally, the entropy change is defined

by

∆S =

∫
dQrev

T
, (7)

Grading : 0.5 pts
where the subscript denotes that only rever-

sible processes should be taken into account. Gi-
ven that the heat engine is assumed to be fully
reversible, and using the fact that the tempera-
ture is constant during the isothermal processes,
we obtain

∆S2 =
16σT 3

2

3c
(V3 − V2) (8)

∆S4 =
16σT 3

1

3c
(V1 − V4). (9)

Grading : 0.5 per ∆S = 1 pts
iv. (0.5 pts) The second law of thermodynamics
implies that in any reversible closed cycle the en-
tropy remains unchanged. Therefore

∆S1 + ∆S2 + ∆S3 + ∆S4 = 0. (10)

v. (1.5 pts) By using the expressions from the
previous two parts, we immediately obtain the de-
sired result

T 3
1 (V1 − V4) = T 3

2 (V2 − V3). (11)
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vi. (2 pts) The efficiency of the cycle is defined as
the ratio of the work done by the gas to the heat
supplied to it. Heat only flows into the system du-
ring process 4 such that

Qin = ∆Q4 =
16σT 4

1

3c
(V1 − V4). (12)

Grading : 0.5 pts

The work done by the gas can be computed
from the first law of thermodynamics, using the
fact that the internal energy is unchanged after
one cycle (Grading : 0.5 pts). Hence,

W =

∫
1 cycle

p dV =

∫
1 cycle

dQ = ∆Q2 + ∆Q4

=
16σ

3c

[
T 4
1 (V1 − V4)− T 4

2 (V2 − V3)
]
. (13)

Grading : 0.5 pts

The efficiency is thus given by

η =
W

Qin
= 1−

(
T2
T1

)4 V2 − V3
V1 − V4

. (14)

Grading : 0.25 pts

This equation may be further simplified using
(11) to arrive at the final expression

η = 1− T2
T1
, (15)

Grading : 0.25 pts which is nothing but the
Carnot efficiency. This result is in fact required by
the second law of thermodynamics, an implication
of which is that all reversible heat engines between
two thermal reservoirs have the same efficiency.

vii. (3 pts) (11) can be rearranged as

T 3
1 V1 − T 3

2 V2 = T 3
1 V4 − T 3

2 V3. (16)

We observe that V1 can be chosen entirely inde-
pendently from V3 and V4 (Grading : 0.5 pts),
although V2 depends on the choice of V1. There-
fore, the two sides of the equations can be varied
independently, which implies that

T 3
1 V1 − T 3

2 V2 = const. (17)

Grading : 0.5 pts

where the constant is independent of the vo-
lumes. Setting V2 = V1 shows that the constant
must be zero, and therefore

T 3
1 V1 = T 3

2 V2. (18)

Grading : 0.5 pts
Since (T1, V1) is connected to (T2, V2) by an

adiabatic process, we have more generally

T 3V = const. (19)

Grading : 0.5 pts
along an adiabat. Using the relation of pres-

sure and temperature given in the problem imme-
diately yields the relation

pV 4/3 = const. (20)

We read off

β = 3, γ = 4/3 (21)

Grading : 0.25 per exponent = 0.5 pts
This is different from an ideal gas, for which

we have γideal gas = 5/3. We can compute using
the ideal gas law Grading : 0.25 pts

pV γ = const. ⇒ TV γ−1 = const. (22)

and thus βideal gas = 3/2.
Grading : 0.25 pts

viii. (1 pt) Room temperature corresponds to
T ≈ 295 K (the exact value used is unimportant).
By plugging the numerical values into the given
formula, we obtain

p =
4σT 4

3c
≈ 1.9× 10−6 Pa (23)

The pressure of the atmosphere is on the order of
1× 105 Pa, showing that the pressure of the pho-
ton gas is very small compared to pressures expe-
rienced in everyday life. However, pressures of this
scale (and a couple of orders of magnitude below)
can be achieved in ultra-high vacuum systems. Si-
milarly, pressure in outer space is on the order
of 1× 10−11 Pa. (I do not expect the students to
know these last two facts.)
ix. (1 pt) A cavity whose walls are kept at a tem-
perature T is automatically filled by a photon gas
at the same temperature (assuming equilibrium).
In order to perform an isotropic expansion / com-
pression it is therefore sufficient to change the size
of the cavity, e.g. by means of a movable piston,
provided the heat capacity of the walls is suffi-
ciently high for the temperature not to change
appreciably. For the adiabatic processes, it is ne-
cessary to prevent any exchange of heat between
the photons and the walls of the cavity. In prin-
ciple, this could be achieved by using perfectly
reflective cavity walls. This leads us to a setup as
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the one shown in the figure below. The left and
right side walls act as the two thermal reservoirs,
which can be coupled or decoupled from the pho-
ton gas by the means of a mirror, which is inserted
in front of them.

In practice, this sort of experiment will hardly
be feasible for a number of reasons. First, the pres-
sure of the photon gas is very small (1.9× 10−6 Pa
at room temperature and 2.5× 10−4 Pa at 1000 K)
and any force measurements will therefore require
high sensitivity. A high vacuum inside and outside
the cavity are necessary for this reason. Secondly,
no material is perfectly reflecting, especially not
when considering a large spectral range, such that
the it will be challenging (if not impossible) to im-
plement an adiabiatic process. Finally, trying to
insert mirrors during this process is very impracti-
cal, and it would be hard to perform in a reversible
fashion.

3 sur 3


