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Physics Olympiad: Final Round 06.06.2020

Theoretical Problems

Duration: 60 minutes
Marks: 16 points

Start each problem on a new page in order to ease the correction.

Natural constants

Hyperfine transition frequency of
caesium ∆νCs = 9 192 631 770 s−1

Speed of light in vacuum c = 299 792 458 m · s−1

Planck constant h = 6.626 070 15× 10−34 kg ·m2 · s−1

Elementary charge e = 1.602 176 634× 10−19 A · s

Boltzmann constant kB = 1.380 649× 10−23 kg ·m2 ·K−2 · s−2

Avogadro constant NA = 6.022 140 76× 1023 mol−1

Luminous efficacy Kcd = 683 cd · kg ·m2 · s3

Magnetic constant µ0 = 4π × 10−7 kg ·m ·A−2 · s−2

Electric constant ε0 ≈ 8.854 187 82× 10−12 A2 · s4 · kg−1 ·m−3

Gas constant R ≈ 8.314 462 618 kg ·m2 ·K−1 ·mol−1 · s−2

Stefan-Boltzmann constant σ ≈ 5.670 374 419× 10−8 kg ·K−4 · s−3

Gravitational constant G = 6.674 30(15)× 10−11 m3 · kg−1 · s−2

Electron mass me = 9.109 383 701 5(28)× 10−31 kg

Neutron mass mn = 1.674 927 498 04(95)× 10−27 kg

Proton mass mp = 1.672 621 923 69(51)× 10−27 kg

Standard acceleration of gravity gn = 9.806 65 m · s−2
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Problem 1.1: Optical tweezers (16 points)
When a material is exposed to an electric field, the
electrons and molecules align themselves with the
field. This is used in optical tweezers, an instru-
ment used to hold or move objects at very small
scales.
Part A. Influence (3.5 points)
We want to study the effect of the electric field on
a small uncharged metal ball with radius R. For
this purpose, we first consider the ball within a
homogeneous electric field ~E0.
i. (1.5 pt.) How do the electrons move in the
ball? Make a drawing on the solution sheet and
plot the charge distribution.
ii. (0.5 pt.) What does the electric field inside
the ball look like?
iii. (0.5 pt.) How great is the resulting electri-
cal force on the ball and in which direction does
it point?
From a more detailed calculation, it follows that
the energy EC stored in the displacement of the
charge in a temporally constant field is given by
EC = 2πR3ε0

∣∣∣ ~E0
∣∣∣2. Furthermore, the displaced

charge is Q = 3πR2ε0
∣∣∣ ~E0

∣∣∣.
iv. (1 pt.) This displacement of charges
and storage of work is analogous to the situation
within a capacitor. How large is the corresponding
capacitance (expressed as function of radius R)?
Part B. Oscillator (7 points)

i. (1 pt.) If we switch on the field from part A
instantaneously, the electrons do not immediately
distribute themselves as described in part A. Be-
sides the mass of the electrons, there is another
reason, explain which one.
In the following we will only consider the mass
and neglect the other reason. Now let us con-
sider an oscillating, homogeneous electric field
~E(t) = ~E0 cos(ωt). This field causes the charge
to oscillate so that Q(t) = Q0(ω) cos(ωt+ ϕ(ω)),
where the amplitude Q0(ω) and the phase ϕ(ω)
both depend on ω.
ii. (0.5 pt.) What is the amplitude of the cur-
rent?
iii. (1 pt.) Analogous to the capacitance, we
can assign an inductance L to the inertia of the

electrons. How large would the corresponding the
inductance be, if the kinetic energy of the elec-
trons is EL?
iv. (3.5 pt.) These inductance and capacity
form a resonant circuit. How large is the corre-
sponding resonance frequency ω0 (assuming the
resistance is negligible)? Express the resonance
frequency only with natural constants, the radius
of the ball R, the amplitude of the electric field∣∣∣ ~E0

∣∣∣ and the (homogeneous) density of the elec-
trons n inside the ball. Neglect effects at the edge
of the ball. Note: assume that all electrons move
equally fast and neglect the ohmic resistance.
v. (1 pt.) Which of the images 1.1.1 shows
the phase response (phase as a function of the fre-
quency) ϕ(ω)? Give a short justification.

Figure 1.1.1: Possible phase responses for oscil-
lating circuit with resistor.

Part C. In focus (5.5 points)

i. (4 pt.) We now generate an inhomoge-
neous electric field with a focused laser beam. How
should the frequency of the laser be chosen so that
the metal ball is attracted towards the focal point?
Specify all possible frequency ranges and justify.
Note: The frequency of the laser can be freely se-
lected.
ii. (1 pt.) We select a frequency in the afore-
mentioned frequency range and place the ball in
the middle of the beam close to the focal point.
Describe its motion (qualitatively).
iii. (0.5 pt.) A CO2 laser has a wavelength of
λ = 10.6 µm (for a laser this is a long wavelength).
What is then the minimum electron density n to
attract the ball to the focal point?

Theoretical part 1 - 2/6



Physics Olympiad: Final Round

SOLU
TIO

NS

06.06.2020

Theoretical Problems: solutions

Problem 1.1: Optical tweezers 16 pt.
When a material is exposed to an electric field, the electrons and molecules
align themselves with the field. This is used in optical tweezers, an instrument
used to hold or move objects at very small scales.

Part A. Influence 3.5 pt.
We want to study the effect of the electric field on a small uncharged metal
ball with radius R. For this purpose, we first consider the ball within a homo-
geneous electric field ~E0.

i. How do the electrons move in the ball? Make a drawing on the solution
sheet and plot the charge distribution. 1.5 pt.

tbd: picture, electric field arrows from right to left

−+
−+

−+

−+

−+

−+

−+

−+

−+

~E

If the field on the drawing of the students points into another direction, the situation has
to be adapted correspondingly.

Positive charge on the left half ball, negative on the right 0.5 pt.

Charge only on the surface 0.5 pt.

More charge on the horizontal extrema than in between 0.5 pt.

Drawing electrons instead of charges: max. 0.75pt (more only in very special cases).

ii. What does the electric field inside the ball look like? 0.5 pt.

Since the ball is conducting, there must be no electric field inside (static case here). 0.5 pt.

iii. How great is the resulting electrical force on the ball and in which direction
does it point? 0.5 pt.

The total force is zero. 0.5 pt.

From a more detailed calculation, it follows that the energy EC stored in the
displacement of the charge in a temporally constant field is given by EC =
2πR3ε0

∣∣∣ ~E0
∣∣∣2. Furthermore, the displaced charge is Q = 3πR2ε0

∣∣∣ ~E0
∣∣∣.
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iv. This displacement of charges and storage of work is analogous to the situa-
tion within a capacitor. How large is the corresponding capacitance (expressed
as function of radius R)? 1 pt.

The energy stored in a capacitor is EC = 1
2
Q2

C .
The capacity is therefore C = Q2

2EC
. (points also given if only one of these formulae is

given) 0.5 pt.

Using the given equations we get C = 9π
4 ε0R. 0.5 pt.

Use of a formula that leads to a wrong prefactor because the capacitor is non-standard:
0.25pt (formula) + 0.25pt (result)

Part B. Oscillator 7 pt.

i. If we switch on the field from part A instantaneously, the electrons do not
immediately distribute themselves as described in part A. Besides the mass of
the electrons, there is another reason, explain which one. 1 pt.

When the electrons accelerate they change their magnetic field which leads to self induc-
tion.
Alternatively one can argue that accelerated charges radiate and for this radiation more
energy is needed. 1 pt.

In the following we will only consider the mass and neglect the other reason.
Now let us consider an oscillating, homogeneous electric field ~E(t) = ~E0 cos(ωt).
This field causes the charge to oscillate so that Q(t) = Q0(ω) cos(ωt+ ϕ(ω)),
where the amplitude Q0(ω) and the phase ϕ(ω) both depend on ω.

ii. What is the amplitude of the current? 0.5 pt.

Taking the derivative of the charge, we get I(t) = −ωQ0(ω) sin(ωt+ ϕ(ω)) and hence an
amplitude of ωQ0(ω). 0.5 pt.

iii. Analogous to the capacitance, we can assign an inductance L to the inertia
of the electrons. How large would the corresponding the inductance be, if the
kinetic energy of the electrons is EL? 1 pt.

The energy stored in an inductance is EL = 1
2LI

2 therefore L = 2EL
I2 . 1 pt.

iv. These inductance and capacity form a resonant circuit. How large is the
corresponding resonance frequency ω0 (assuming the resistance is negligible)?
Express the resonance frequency only with natural constants, the radius of the
ball R, the amplitude of the electric field

∣∣∣ ~E0
∣∣∣ and the (homogeneous) density of

the electrons n inside the ball. Neglect effects at the edge of the ball. Note:
assume that all electrons move equally fast and neglect the ohmic resistance. 3.5 pt.

At resonance, the whole energy stored in the “capacitor” is now stored in the kinetic
energy of the electrons (points also given if directly next formula is applied). 0.5 pt.

Formally this means EC = 1
2v

2meN where v is the velocity, me is the mass of the electrons
and N = n4πR3

3 the number of moving electrons (not to be mistaken with the charge Q
or Q

e ). Hence v = Q0(ω0)
√

1
CmeN

. 1 pt.
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The current density is j = vne. 0.5 pt.

And therefore the maximal current is I = jA where A = πR2 is the cross section area of
the ball. 0.5 pt.

Therefore I = vneπR2 = neπR2Q0(ω0)
√

1
CmeN

= eQ0(ω0)
√

3πnR
4Cme

= eQ0(ω0)
√

n
3ε0me

.
(different forms possible) 0.5 pt.

Using I = ω0Q0(ω0) we get ω0 =
√

e2n
3meε0

0.5 pt.

There is also a solution using ω = 1√
LC

. Points are given accordingly.

v. Which of the images 1.1.1 shows the phase response (phase as a function
of the frequency) ϕ(ω)? Give a short justification.

Figure 1.1.1: Possible phase responses for oscillating circuit with resistor.

1 pt.
The images a) and b) are resonance curves and do not represent the phase. For ω = 0 we
are in phase, so ϕ = 0 and hence c).
If a student argues that electrons are moving and due to their negative charge there is a
sign flip, answer d) is also fine (explanation important). 1 pt.

Part C. In focus 5.5 pt.

i. We now generate an inhomogeneous electric field with a focused laser
beam. How should the frequency of the laser be chosen so that the metal ball
is attracted towards the focal point? Specify all possible frequency ranges and
justify. Note: The frequency of the laser can be freely selected. 4 pt.
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In case of an inhomogeneous static electric field, a metallic object gets attracted towards
higher field strength. 1 pt.

Let ω be the frequency of the laser. If ω < ω0, the electrons are fast enough to follow the
external electric field of the laser similar to a static case of a static inhomogeneous electric
field. Therefore the ball gets attracted by the focal point. 1 pt.

In case ω > ω0, the electrons are out of phase meaning the ball is in average opposite
charged that in case of a static field. This means it is repelled from the focus. 1 pt.

At resonance ω = ω0, the ball will not move. 0.5 pt.

Therefore we have to choose a frequency smaller than the resonance frequency. 0.5 pt.

ii. We select a frequency in the aforementioned frequency range and place
the ball in the middle of the beam close to the focal point. Describe its motion
(qualitatively). 1 pt.

The ball is attracted by the higher intensities and it is therefore attracted by the focal
point. Hence the laser acts as restoring force. 0.5 pt.

and therefore the ball will oscillate around the focal point. 0.5 pt.

iii. A CO2 laser has a wavelength of λ = 10.6 µm (for a laser this is a long
wavelength). What is then the minimum electron density n to attract the ball
to the focal point? 0.5 pt.

From the condition above we have 2πc
λ = ω ≤ ω0 =

√
e2n

3meε0
.

Therefore n = 12π2c2meε0
λ2e2 = 3.00× 1025 m−3. 0.5 pt.
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Theoretical Problems

Duration: 60 minutes
Marks: 16 points

Start each problem on a new page in order to ease the correction.

Natural constants

Hyperfine transition frequency of
caesium ∆νCs = 9 192 631 770 s−1

Speed of light in vacuum c = 299 792 458 m · s−1

Planck constant h = 6.626 070 15× 10−34 kg ·m2 · s−1

Elementary charge e = 1.602 176 634× 10−19 A · s

Boltzmann constant kB = 1.380 649× 10−23 kg ·m2 ·K−2 · s−2

Avogadro constant NA = 6.022 140 76× 1023 mol−1

Luminous efficacy Kcd = 683 cd · kg ·m2 · s3

Magnetic constant µ0 = 4π × 10−7 kg ·m ·A−2 · s−2

Electric constant ε0 ≈ 8.854 187 82× 10−12 A2 · s4 · kg−1 ·m−3

Gas constant R ≈ 8.314 462 618 kg ·m2 ·K−1 ·mol−1 · s−2

Stefan-Boltzmann constant σ ≈ 5.670 374 419× 10−8 kg ·K−4 · s−3

Gravitational constant G = 6.674 30(15)× 10−11 m3 · kg−1 · s−2

Electron mass me = 9.109 383 701 5(28)× 10−31 kg

Neutron mass mn = 1.674 927 498 04(95)× 10−27 kg

Proton mass mp = 1.672 621 923 69(51)× 10−27 kg

Standard acceleration of gravity gn = 9.806 65 m · s−2
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Problem 2.1: Inhomogeneous cylinder
(16 points)
This problem studies an inhomogeneous cylinder
whose halves are made of two materials of different
densities.
Part A. Center of mass of the cylinder (4 points)
The cylinder we are studying has a radius r and
length l.
This is a (circular) section of the cylinder:

density
c kg · dm−3

density
1 kg · dm−3

The bottom half is made of a material whose den-
sity is 1 kg · dm−3, while the upper half is made of
a material whose density is c kg · dm−3, where c
is a parameter 0 < c < 1.
We recall that for a half-cylinder of radius r, the
center of mass has a distance of 4r

3π from the axis of
the half-cylinder, as can be seen from this drawing
of its section:

CM
4r
3π

i. (1 pt.) Compute the mass M of the whole in-
homogeneous cylinder, and the distance d between
the geometrical center and the center of mass of
the whole inhomogeneous cylinder as a function of
the parameters r, l, c.
ii. (3 pt.) Compute the moment of inertia I of
the whole inhomogeneous cylinder with respect to
its geometrical axis, and its moment of inertia ICM
with respect to an axis parallel to the geometrical
one but passing through its center of mass. The
answers should be given as functions of r, l, c.
Part B. Small oscillations (4 points)
Let us assume that the geometrical axis of the
cylinder is fixed in a horizontal position, but the
cylinder is free to move (i.e., to rotate) without
any friction around this axis.

i. (1 pt.) What is the unique position of stable
equilibrium for this body?

ii. (3 pt.) From the position of equilibrium,
we turn the cylinder by 0.1 rad. After we release
the cylinder, it starts oscillating around its stable
position. Find the equation of motion for the an-
gle φ and estimate the period of oscillation of the
cylinder as a function of the parameters c, r, l.

Part C. Rolling on a horizontal plane (4 points)
Now we assume that the cylinder is completely
free to move on a horizontal plane under the ac-
tion of gravity, the reaction of the plane and its
friction.
We assume for simplicity that the coefficient of
static friction between the cylinder and the plane
is infinite, such that the cylinder cannot skid as
long as it touches the plane.
Suppose that at time t0 = 0 the cylinder is in its
equilibrium position, but it has an angular speed
of ω.

i. (4 pt.) If ω is sufficiently low, the cylinder
will undergo a periodic motion around its equilib-
rium point. What is the minimum value ω0 of ω
that allows the cylinder to escape this loop and
start rolling forever in the same direction? The
answer should be given either in terms of the pa-
rameters c, r, l or, for convenience, in terms of the
parameters M , r, d, ICM.

Part D. Bumpy ride (4 points)
Now we assume a different scenario. Suppose that
the cylinder is not free to move under gravity
and the reaction of the plane, but that its angu-
lar velocity is kept constant by an external agent.
This external agent only applies momentum to the
cylinder, the net force applied on it by the exter-
nal agent is zero.
We still assume for simplicity that the coefficient
of static friction between the cylinder and the
plane is infinite, such that the cylinder cannot skid
as long as it touches the plane.

i. (4 pt.) If ω is sufficiently high, the motion of
the cylinder will be “bumpy”. Compute the min-
imum value ω1 of ω that allows the cylinder to
detach from the ground. The answer should ei-
ther be given in terms of the parameters c, r, l or,
for convenience, in terms of the parameters M , d,
ICM.
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Theoretical Problems: solutions

Problem 2.1: Inhomogeneous cylinder 16 pt.
This problem studies an inhomogeneous cylinder whose halves are made of
two materials of different densities.

Part A. Center of mass of the cylinder 4 pt.
The cylinder we are studying has a radius r and length l.
This is a (circular) section of the cylinder:

density
c kg · dm−3

density
1 kg · dm−3

The bottom half is made of a material whose density is 1 kg · dm−3, while the
upper half is made of a material whose density is c kg · dm−3, where c is a
parameter 0 < c < 1.
We recall that for a half-cylinder of radius r, the center of mass has a distance
of 4r

3π from the axis of the half-cylinder, as can be seen from this drawing of its
section:

CM
4r
3π

i. Compute the mass M of the whole inhomogeneous cylinder, and the
distance d between the geometrical center and the center of mass of the whole
inhomogeneous cylinder as a function of the parameters r, l, c. 1 pt.

The mass of the cylinder is

M = πr2l

2 (1 + c) kg · dm−3.

The center of mass is inside the heavier part of the cylinder, and its distance from the
center is given by the formula

d = 4r
3π ·

1− c
1 + c

.

The length l plays no role in this second computation. 1 pt.

ii. Compute the moment of inertia I of the whole inhomogeneous cylinder
with respect to its geometrical axis, and its moment of inertia ICM with respect
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to an axis parallel to the geometrical one but passing through its center of
mass. The answers should be given as functions of r, l, c. 3 pt.

In order to compute the moment of inertia with respect to the geometrical axis, we observe
that for a homogeneous half-cylinder the moment of inertia is half the moment of inertia
of a full homogeneous cylinder.
In particular, if Mf is the mass of a full homogeneous cylinder of radius r, its moment of
inertia w.r.t. the geometrical axis of the cylinder is

If = 1
2Mfr

2.

For a half homogeneous cylinder, the moment of inertia is half of the corresponding inertia
for the full cylinder. Notice that if Mf is the mass of the full cylinder, then the mass of
the half-cylinder is Mh = Mf

2 .

Ih = 1
2
Mf
2 r2 = 1

2Mhr
2

Moments of inertia are additive, so in our case we have that the moment of inertia of the
non-homogeneous cylinder w.r.t. the geometrical axis is

I = 1
2 (Mu +Mb) r2,

where Mb is the mass of the bottom part, and Mu is the mass of the upper part of the
cylinder, which can be expressed as

I = 1
2
πr2l

2 (1 + c) kg · dm−3r2 = πr4l

4 (1 + c) kg · dm−3.

The moment of inertia w.r.t. the axis passing through the center of mass can be obtained
with Steiner’s theorem:

ICM = I −Md2,

where d is the distance between the axis of the cylinder and the center of mass, so:

ICM = πr4l

4 (1 + c) kg · dm−3 − πr2l
1 + c

2 kg · dm−3
( 4r

3π ·
1− c
1 + c

)2

= πr4l
1 + c

2 kg · dm−3
(

1
2 −

16
9π2

(1− c)2

(1 + c)2

)
.

3 pt.

The distribution of points depends on the solution path; for example:

• Moment of inertia of a full cylinder w.r.t. its geometrical axis: 0.5 points

• Moment of inertia of a half-cylinder w.r.t. the geometrical axis of the (whole) cylin-
der: 0.5 points

• Moment of inertia of the inhomogeneous cylinder w.r.t. its geometrical axis: 1 point

• Moment of inertia of the inhomogeneous cylinder w.r.t. an axis parallel to the geo-
metrical one passing through the center of mass, using Steiner’s theorem: 1 point
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Part B. Small oscillations 4 pt.
Let us assume that the geometrical axis of the cylinder is fixed in a horizontal
position, but the cylinder is free to move (i.e., to rotate) without any friction
around this axis.
i. What is the unique position of stable equilibrium for this body? 1 pt.
The only stable equilibrium position is the one where the center of mass is directly below
the geometrical axis. 1 pt.
ii. From the position of equilibrium, we turn the cylinder by 0.1 rad. After
we release the cylinder, it starts oscillating around its stable position. Find
the equation of motion for the angle φ and estimate the period of oscillation
of the cylinder as a function of the parameters c, r, l. 3 pt.
In order to study the motion of this body, we apply the law

µ = Iγ,

where µ is the moment of the forces acting on the cylinder w.r.t. the geometrical axis
(which is fixed in this motion), I is the moment of inertia of the cylinder w.r.t. the
geometrical axis, and γ is the angular acceleration of the cylinder.
If the angle between the center of mass and the negative vertical direction is α, as seen in
this picture:

CM
α

•
d

then the moment of gravity acting on the cylinder is

µ = −Mgd sin(α) ,

so we have
γ = −Mgd

I
sin(α) .

For small oscillations, we can approximate sin(α) ≈ α, and get the approximate equation
of angular motion

γ ≈ −Mgd

I
α.

This is a harmonic oscillation with period

T = 2π
√

I

Mgd
= 2π

√
2I

πr2l (1 + c) kg · dm−3gd
= 2π

√
3πr (1 + c)
8g (1− c) .

3 pt.
The distribution of points depends on the solution path; for example:
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• Computing the right momentum of forces acting on the cylinder as a function of α
(gravitational force w.r.t. the geometrical center): 0.5 points

• Applying the fundamental law of rotational mechanics, i.e., µ = Iγ, to compute the
angular acceleration: 0.5 points

• Using the approximation sin(α) ≈ α for small α: 0.5 points

• Computing the period of small oscillations recognizing that the angular acceleration
follows the harmonic oscillator law: 1.5 points

Part C. Rolling on a horizontal plane 4 pt.
Now we assume that the cylinder is completely free to move on a horizontal
plane under the action of gravity, the reaction of the plane and its friction.
We assume for simplicity that the coefficient of static friction between the
cylinder and the plane is infinite, such that the cylinder cannot skid as long
as it touches the plane.
Suppose that at time t0 = 0 the cylinder is in its equilibrium position, but it
has an angular speed of ω.
i. If ω is sufficiently low, the cylinder will undergo a periodic motion around
its equilibrium point. What is the minimum value ω0 of ω that allows the
cylinder to escape this loop and start rolling forever in the same direction?
The answer should be given either in terms of the parameters c, r, l or, for
convenience, in terms of the parameters M , r, d, ICM. 4 pt.
During the motion, the sum of kinetic and (gravitational) potential energy is constant. In
order to escape an infinite loop, the cylinder must have enough kinetic energy to allow its
center of mass to reach the position directly above the geometrical axis (not below).
Thus, we compute the kinetic energy of the body at time t0, which can be split into the
sum of two components: translational energy of the CM and rotational energy around the
CM.
The first component is

Kt = 1
2Mv2

CM = 1
2Mω2

0 (r − d)2 ,

while the rotational energy is
Kr = 1

2ICMω
2
0.

Assuming for convention that the zero of the potential energy coincides with the height of
the ground, we have that at time t0 the potential energy is

P0 = Mg (r − d) ,

while at the threshold point, i.e., when the CM is directly above the geometrical axis, the
potential energy is

P1 = Mg (r + d) .
Thus the conservation of energy gives the threshold condition

Kt +Kr + P0 = P1,

|ω0| =
√

4Mgd

M (r − d)2 + ICM
.

4 pt.
The distribution of points depends on the solution path; for example:
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• Recognizing that the total energy is conserved: 1 point

• Computing the right formula for the kinetic energy at the lowest point of motion:
0.5 points

• Computing the right formula for the potential energy of the cylinder (at any point of
the motion): 0.5 points

• Realizing that the threshold angular speed is the one which allows the center of mass
of the cylinder to reach its highest possible point with zero angular speed: 1 point

• Writing the right formula for the threshold angular speed using conservation of en-
ergy: 1 point

Part D. Bumpy ride 4 pt.
Now we assume a different scenario. Suppose that the cylinder is not free
to move under gravity and the reaction of the plane, but that its angular
velocity is kept constant by an external agent. This external agent only applies
momentum to the cylinder, the net force applied on it by the external agent
is zero.
We still assume for simplicity that the coefficient of static friction between the
cylinder and the plane is infinite, such that the cylinder cannot skid as long
as it touches the plane.

i. If ω is sufficiently high, the motion of the cylinder will be “bumpy”.
Compute the minimum value ω1 of ω that allows the cylinder to detach from
the ground. The answer should either be given in terms of the parameters c,
r, l or, for convenience, in terms of the parameters M , d, ICM. 4 pt.

As long as the cylinder does not detach from the ground, the center of mass undergoes a
motion which is the composition of a uniform translation along the direction of motion of
the cylinder, and a rotation around the geometrical center of the cylinder.
The cylinder detaches from the ground if the gravitational force is not strong enough to
generate sufficient centripetal force to maintain the rotation of the center of mass.
If the angle between the center of mass and the negative vertical direction is α, then the
vertical centripetal acceleration needed for the center of mass to stay on course is given
by

ω2d cos(α),

where the positive direction is upwards. The strongest downward centripetal force is

a = −ω2d,

which must be smaller than gravity (in absolute value) if we want the cylinder not to
detach from the ground. Thus we get the condition

|ω1| =
√
g

d
.

4 pt.

The distribution of points depends on the solution path; for example:
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• Realizing that the condition for the cylinder to detach from the ground is that the
required angular acceleration of the center of mass to stay on a circular course must
be bigger than the gravitational force (the threshold being equality): 1.5 points

• Computing the right centripetal acceleration for the (center of mass of the) inhomo-
geneous cylinder: 0.5 points

• Realizing that the threshold angular speed is given by studying the motion of the CM
at its highest point on the circular trajectory: 0.5 points

• Computing the right threshold for the angular speed: 1.5 points
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Theoretical Problems

Duration: 60 minutes
Marks: 16 points

Start each problem on a new page in order to ease the correction.

Natural constants

Hyperfine transition frequency of
caesium ∆νCs = 9 192 631 770 s−1

Speed of light in vacuum c = 299 792 458 m · s−1

Planck constant h = 6.626 070 15× 10−34 kg ·m2 · s−1

Elementary charge e = 1.602 176 634× 10−19 A · s

Boltzmann constant kB = 1.380 649× 10−23 kg ·m2 ·K−2 · s−2

Avogadro constant NA = 6.022 140 76× 1023 mol−1

Luminous efficacy Kcd = 683 cd · kg ·m2 · s3

Magnetic constant µ0 = 4π × 10−7 kg ·m ·A−2 · s−2

Electric constant ε0 ≈ 8.854 187 82× 10−12 A2 · s4 · kg−1 ·m−3

Gas constant R ≈ 8.314 462 618 kg ·m2 ·K−1 ·mol−1 · s−2

Stefan-Boltzmann constant σ ≈ 5.670 374 419× 10−8 kg ·K−4 · s−3

Gravitational constant G = 6.674 30(15)× 10−11 m3 · kg−1 · s−2

Electron mass me = 9.109 383 701 5(28)× 10−31 kg

Neutron mass mn = 1.674 927 498 04(95)× 10−27 kg

Proton mass mp = 1.672 621 923 69(51)× 10−27 kg

Standard acceleration of gravity gn = 9.806 65 m · s−2
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Problem 3.1: Doppler spectroscopy
(16 points)
Half of the 2019 Nobel Prize in Physics was
awarded to the Swiss astrophysicists Michel Mayor
and Didier Queloz for the first discovery, in 1995,
of an exoplanet (orbiting around a star in the main
sequence).
The method used is called Doppler spectroscopy,
or radial velocity method, and consists of observ-
ing the star’s movements caused by its satellite
planet. By observing fluctuations in the spectrum
of the star, the Doppler effect allows us to deduce
the fluctuations in the star’s velocity along the ob-
servation axis.

Earth

θ

r

We consider that the exoplanet moves on a circle
of radius r, seen under an angle θ from the Earth,
around the center of mass that it shares with the
star. We take M for the mass of the star and m
for the mass of the planet.

i. (5 pt.) Determine the period T of the oscilla-
tion of the star’s spectrum according to the given
parameters.

ii. (3 pt.) Determine the maximum relative
∆frec
fem

variation in the oscillation of the star’s spec-
trum as a function of the given parameters.

iii. (4 pt.) Discuss the practicality of this
method depending on the possible values of the
parameters.

iv. (4 pt.) In the case of 51 Pegasi b, the first
planet discovered, the T period is approximately
four days and ∆frec

fem
≈ 3.74× 10−7. The mass of

its star has been estimated atM ≈ 2.23× 1030 kg.
What can we say about the mass of the planet,
which is assumed to be much smaller than the
mass of the star?

Theoretical part 3 - 2/6



Physics Olympiad: Final Round

SOLU
TIO

NS

06.06.2020

Theoretical Problems: solutions

Problem 3.1: Doppler spectroscopy 16 pt.
Half of the 2019 Nobel Prize in Physics was awarded to the Swiss astrophysi-
cists Michel Mayor and Didier Queloz for the first discovery, in 1995, of an
exoplanet (orbiting around a star in the main sequence).
The method used is called Doppler spectroscopy, or radial velocity method,
and consists of observing the star’s movements caused by its satellite planet.
By observing fluctuations in the spectrum of the star, the Doppler effect al-
lows us to deduce the fluctuations in the star’s velocity along the observation
axis.

Earth

θ

r

We consider that the exoplanet moves on a circle of radius r, seen under an
angle θ from the Earth, around the center of mass that it shares with the star.
We take M for the mass of the star and m for the mass of the planet.

i. Determine the period T of the oscillation of the star’s spectrum according
to the given parameters. 5 pt.

From symmetry arguments, the trajectory of the star is circular as well (with same center
and period as the planet). Let’s name the radius R.

The gravitational force FG on the planet is equal to the centripetal force FCP acting on the
planet:

FG = GMm

(r +R)2 ,

FCP = mω2r,

GMm

(r +R)2 = mω2r, (1)

where ω is the angular velocity with which the planet orbits around the center of mass.
Solving equation (1) for ω we find

ω =
√

GM

(r +R)2 r
.
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The period of the planet is related to the angular velocity by T = 2π
ω :

T = 2π ·

√
(r +R)2 r

GM
. (2)

Since R is not a given parameter, we need to eliminate it by considering the forces acting
on the star. Similarly to the planet, the gravitational force is the same as the centripetal
force acting on the star:

GMm

(r +R)2 = Mω2R,

where the circular motion of the star has radius R and the same angular velocity ω as the
planet. Using equation (1), we find that mω2r = Mω2R and thus

R = m

M
r.

Inserting this relation into equation (2), we obtain

T = 2π ·

√(
r + m

M r
)2
r

GM

= 2π ·

√
r3

GM

(
1 + m

M

)
.

This is a generalization of Kepler’s third law.

(A1) Circular concentric trajectory or conservation of momentum 1 pt.

(A2) Dynamics equations 0.5 pt.

(A3) Circular movement kinematics equations 0.5 pt.

(A4) Equating the period 1 pt.

(A5) Correct calculations 1 pt.

(A6) Correct final answer (or equivalent) for T
(if the simpler Kepler’s third law is found without motivation, do not give the point; if it
is motivated (additional hypothesis m�M), give 0.5 point) 1 pt.

ii. Determine the maximum relative ∆frec
fem

variation in the oscillation of the
star’s spectrum as a function of the given parameters. 3 pt.

The speed of the star can be obtained by using V = 2πR
T since the star travels the circum-

ference in one period. Using the result from question i) we find

V = R

√
GM

r3
M

M +m
.

Now we use again R = m
M r to find

V = m

M

√
GM

r

M

M +m
=
√
GM

r

m

M +m
.
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The extrema of this velocity projected onto the line of sight from the point of the earth are
Vem = ±V cos θ.

Next, we use the Doppler effect for a static receiver (vrec = 0):

frec = c

c− Vem
fem,

where fem is the emitted frequency and frec is the received frequency and c is the speed of
light. Note that it is permissible to use the classical Doppler effect if we assume Vem to
be small - we will verify this in question iv). The variation in frequency is given as the
difference of the received frequencies for velocities +Vem and −Vem:

frec, max − frec, min
fem

= c

c− |Vem|
− c

c+ |Vem|
= 2c |Vem|
c2 − V 2

em
.

Inserting the expression for Vem we find

∆frec
fem

=
2c
√

GM
r

m
m+M cos(θ)

c2 − GM
r

(
m

m+M

)2
cos2(θ)

.

(B1) Correct velocity norm 1 pt.

(B2) cos(θ) from the projection 1 pt.

(B3) Using Doppler’s effect 0.5 pt.

(B4) Correct application of Doppler’s effect, including (possibly implicitly) vrec = 0 0.5 pt.

iii. Discuss the practicality of this method depending on the possible values
of the parameters. 4 pt.

For m�M , T doesn’t change much (Kepler’s law) but ∆frec
fem
∼ m

M → 0.

For large r, T gets large but ∆frec
fem
∼ 1√

r
→ 0.

For θ → π
2 , T doesn’t change but ∆frec

fem
∼ cos(θ)→ 0.

So this method performs better for massive planets close to their star (so-called “hot
Jupiters”) with a small enough inclination θ.

(C1) Influence of small mass ratio 1 pt.

(C2) Influence of large planet distance 1 pt.

(C3) Commenting on both the period T and ∆frec
fem

1 pt.

(C4) Influence of high inclination 1 pt.

iv. In the case of 51 Pegasi b, the first planet discovered, the T period is
approximately four days and ∆frec

fem
≈ 3.74× 10−7. The mass of its star has been
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estimated at M ≈ 2.23× 1030 kg. What can we say about the mass of the planet,
which is assumed to be much smaller than the mass of the star? 4 pt.

From question iii), we observe that if m � M , the ratio ∆frec
fem

is also small. Hence, we
can approximate

∆frec
fem

≈ 2Vem
c
.

Solving for Vem we find
Vem = c

2
∆frec
fem

= 56.1 m · s−1.

Thus as long as θ is not too large, the velocity can be treated non-relativistically and we
can justify the classical Doppler equation in question ii).

Using V T = 2πR, MR = mr and inserting in the equation for the velocity of question ii),
we find

V =
√

2πGm
V T

m

m+M
.

Solving for M and bringing to standard form, this would give a cubic equation that is not
practical to solve. However, with m much smaller than M , we have

m

m+M
≈ m

M
.

This simplifies the above formula to

V
3
2 =

√
2πG
T

m
3
2

M
.

Solving for m and using Vem = V cos(θ) yields

m = Vem
cos(θ)M

2
3

(
T

2πG

) 1
3
.

cos(θ) is positive and monotonically decreasing in
[
0, π2

]
with values in [0, 1]. Therefore m

grows monotonically with θ, thus the value at θ = 0 is a minimum. For θ → π
2 , m→∞.

Therefore all we can say is that m ≥ m(θ = 0) (together with the assumption on the mass
ratio).

Numerically:
m(θ = 0) ≈ 8.97× 1026 kg.

(D1a) Simplification of ∆frec
fem

for small velocity 1 pt.

(D1b) Correct calculation 1 pt.

(D2) Reasonable numerical value 1 pt.

(D3) Value is a minimum 1 pt.
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