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Natural constants

Caesium hyperfine frequency ∆νCs 9.192 631 770 ×109 s−1

Speed of light in vacuum c 2.997 924 58 ×108 m · s−1

Planck constant h 6.626 070 15 ×10−34 kg ·m2 · s−1

Elementary charge e 1.602 176 634 ×10−19 A · s
Boltzmann constant kB 1.380 649 ×10−23 K−1 · kg ·m2 · s−2

Avogadro constant NA 6.022 140 76 ×1023 mol−1

Luminous efficacy of radiation Kcd 6.83 ×102 cd · kg−1 ·m−2 · s3 · sr
Magnetic constant µ0 1.256 637 062 12(19) ×10−6 A−2 · kg ·m · s−2

Electric constant ε0 8.854 187 812 8(13) ×10−12 A2 · kg−1 ·m−3 · s4

Gas constant R 8.314 462 618... K−1 · kg ·m2 ·mol−1 · s−2

Stefan-Boltzmann constant σ 5.670 374 419... ×10−8 K−4 · kg · s−3

Gravitational constant G 6.674 30(15) ×10−11 kg−1 ·m3 · s−2

Electron mass me 9.109 383 701 5(28) ×10−31 kg
Neutron mass mn 1.674 927 498 04(95) ×10−27 kg

Proton mass mp 1.672 621 923 69(51) ×10−27 kg
Standard acceleration of gravity gn 9.806 65 m · s−2
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Long problems
Duration: 150 minutes
Marks: 48 points (3× 16)

Start each problem on a new sheet in order to ease the correction.

General hint: The problems consist of partially independent problem parts, so if you get stuck, it is a good
idea to read further ahead and to continue with an easier part.

Long problem 1.1: Stability of a rotating egg
(16 points)
Consider an egg represented by a homogeneous solid
of revolution with profile f(t) = 1

2

√
t− t4 on do-

main t ∈ [a = 0, b = 1]. To transform this profile
into physical units, a length factor ` is applied. The
egg has a density ρ.
The egg’s centre of mass is at x = c = 5

9`.

x

y

z

O
`

`f
(
x
`

)
cR(0)

R(`)

Part A. Warmup (0.5 points)
i. (0.5 pts) Calculate the volume V of the egg.

Part B. Moment of inertia (8.5 points)
The moment of inertia of a solid about an axis A is
given by

IA =

∫∫∫
V
ρD2

A(x, y, z)dV,

where DA(x, y, z) is the (perpendicular) distance
from point (x, y, z) to axis A.

i. (1.75 pts) For a homogeneous ball of the same
density ρ and volume V as the egg, determine the
moment of inertia along an axis through its centre.
To do this, you can decompose the ball into a set of
rings of radius 0 ≤ s ≤ r, thickness ds and width
dx, where r is the radius of the ball. The integral
then becomes

IB = 2πρ

∫ r

−r

∫ √
r2−x2

0
s3dsdx.

Calculating such a multiple integral amounts to
evaluating first the inner integral (over ds) keeping
x constant, then the outer integral over dx.
The result should be of the form

IB = kπρ`5,

where k is a dimensionless factor.

ii. (2.5 pts) Determine the moment of inertia Icx
of the egg along the axis x through the centre of
mass c similar to the calculation for the ball above.

iii. (2 pts) Determine the moment of inertia IOz of
the egg along the axis z passing through the origin
O. This time there is no symmetry of revolution
about the axis and we cannot consider the radius
s. Instead, the integral can be solved in Cartesian
coordinates, in the form

IOz = `5
∫ b

a

∫ f(x)

−f(x)

∫ √
f2(x)−y2

−
√

f2(x)−y2
ρ
(
x2 + y2

)
dz dy dx.

You can use without proof that∫ |w|

−|w|

(
v2 + x2

)√
w2 − x2 dx =

1

8
πw2

(
4v2 + w2

)
.

iv. (1 pt) Deduce the moment of inertia Icz of the
egg along the axis z passing through the centre of
mass c.

v. (0.5 pts) What is the value of Icy? Justify this.

vi. (0.75 pts) Check that

Icx < IB < Icz < IOz

and justify why.
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Icx, Icy and Icz are elements of what is called the
solid’s tensor of inertia, which generalises the mo-
ment of inertia to cases where the solid does not
have rotational symmetry about its axis of rotation.
In particular, if a solid of revolution rotates about
an axis passing through its centre of mass and in-
clined at an angle θ to its axis of symmetry, then
its moment of inertia along the axis of rotation will
be

I = I‖ cos2(θ) + I⊥ sin2(θ) ,

where I‖ is the moment of inertia along the axis of
symmetry and I⊥ is the moment of inertia along
an axis perpendicular to it and passing through the
centre of mass.
Part C. Stability of the egg in rotation (7 points)
At any point on a sufficiently regular curve g(x), we
can define an osculating circle, which is the circle
that best approximates the curve at that point. Its
radius is called the radius of curvature of the curve
at the given point, and has the value

R(x) =

(
1 +

(
dg
dx(x)

)2) 3
2

∣∣∣ d2g
dx2 (x)

∣∣∣ .

For the profile `f
(
x
`

)
of the egg, we obtain R(0) =

1
8` and R(`) = 3

8`.
We rotate the egg on its tip and wish to determine
the minimum angular velocity ω required for it not
to tilt. To do this, consider the egg inclined at an
angle θ � 1 to the vertical, rotating about the ver-
tical axis passing through its point of contact with
the ground.

c

ω

θ

d

h

i. (1.5 pts) Determine the height h(θ) of the centre
of mass and its distance d(θ) from the axis of rota-
tion. The angle θ is small, so you can approximate
the curvature of the tip of the egg by that of its
osculating circle.

ii. (2.5 pts) Determine the total mechanical en-
ergy of the egg E(θ), again assuming the angle is
small.

iii. (2.5 pts) Deduce the condition on ω for the
egg to be in a stable rotation on its tip. What do
you notice?

iv. (0.5 pts) Calculate the corresponding numer-
ical value for ω by taking ` = 6 cm and the mass
of the egg m = 60 g. Also calculate the numerical
value for the rotational frequency ν.
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Long problem 1.2: Steam Boat (16 points)

A few years ago, as part of a team event, a group
of students and volunteers made a boat trip on the
Lake Lucerne. Luckily they could make the trip on
a steam boat where a data sheet was attached next
to the big steam engine. Inspired by this story, let
us investigate the steam engine and think about its
design. In figure 1 such an engine is sketched.

Figure 1: Sketch of a steam engine. 1: The steam
reservoir (blue) with constant pressure p1. 2: Cylin-
der (diameter D, green and orange region) where
the piston (3) moves in the orange region over the
distance L. 4: Minimal volume V0 (each of the
green regions) that remains when the piston is at
the corresponding end of the cylinder. 5 and 6:
Valves to control the steam flow from the reservoir
(1) into the cylinder. 7 and 8: Valves to control the
steam flow from the cylinder to the outside where
there is the pressure p2.

Part A. Power (16 points)

Some more information about the steam engine: it
consists of a cylinder with diameter D = 800mm
where a steam pressure p1 = 13 bar (absolute pres-
sure) is used. The piston slides in the cylinder over

a distance L = 1300mm. The engine completes 48
full cycles per minute.

i. (6 pts) Assume that when the piston moves
from left to right, valves 5 and 8 are permanently
open (6 and 7 closed). The valves immediately
change their state as soon as the piston reaches
the rightmost point and starts to move back to the
left (the valves then switch again immediately when
the piston reaches the other turning point on the
left). Estimate the power of the steam engine as
a function of the given variables and compute the
corresponding numerical value. If needed, make
assumptions, justify and document them.

ii. (7 pts) The control of the valves described in
the previous task is quite inefficient. Indeed, when
the valves switch, they release the energy stored in
the steam with high pressure p1 in the environment
(at pressure p2). To optimize the efficiency, we now
change the valve control: when the piston is at the
leftmost point, valve 5 opens quickly, filling the left
volume 4 with steam of pressure p1. Then valve
5 closes again and stays closed for the rest of the
cycle. While the piston moves to the right, valve 8 is
permanently open, while the other valves are closed.
Assume that the time ∆t during which the valve 5
is open is short, i.e. ∆t� T with T the period of
the piston cycle. When the piston moves the oppo-
site way, the valves open and close correspondingly.
Estimate the power formally and numerically. If
necessary, make assumptions on unknown variables
and quantities, justify and document them.

iii. (3 pts) The power on the data sheet is given1 as
331 kW. Compare this value with your calculations
from questions i. and ii. and discuss (qualitatively)
your comparison (i.e. why both values agree quite
well or why they do not).

1Actually the steam engine on the boat contains 3 cylinders, the value here was already divided by 3.
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Long problem 1.3: Pion Decays (16 points)

Part A. Pion beam (3 points)

For a particle physics experiment, (positive) pions
(π+), which are transported in a beam with momen-
tum p = 65MeV/c, are required. However, pion pro-
duction also creates anti-muons (µ+) and positrons
(e+), which all have the same charge and momentum.
However, they differ in mass (mπ = 140MeV/c2,
mµ = 106MeV/c2, me = 0.511MeV/c2) and life-
time (τπ = 26 ns, τµ = 2197 ns). The positron is
stable in a vacuum.

i. (1.5 pts) At what speed are the individual
particles traveling in the beam?

ii. (1.5 pts) The beam source produces all
three types of particles at an interval T = 20 ns.
This means that all 20ns, pions, anti-muons and
positrons are shot into the beam line. At what time
relative to the pions can anti-muons be seen in the
experiment if the beamline is 16m long?

Part B. Ways of decays (4.5 points)

In the following, we consider two ways in which
pions can decay. Anti-muons always decay to
positrons.

π+ → e+νe 0.01%
π+ → µ+νµ 99.99%
µ+ → e+ν̄µνe 100%

(Anti-)neutrinos νe, νµ, ν̄µ are (almost) massless
particles that cannot be detected.
A pion can therefore either decay directly to a
positron (“π → e”) or first to a muon, which then
decays to a positron (“π → µ → e”). In the ex-
periment, all pions are stopped. If the pion decays
to a muon, the latter is also stopped within a few
picoseconds. All particles in this part decay at rest.

i. (1 pt) What is the energy Eπ→e
e of a positron

that comes directly from a pion decay (π → eνe)?
We neglect the mass of the positron with respect
to the pion mass and the positron energy (mec

2 �
Eπ→e

e ,mπc
2).

ii. (1.5 pts) What is the maximum energy
Eµ→e

e,max of a positron if the pion first decays to
an anti-muon and the anti-muon then decays to

a positron (π+ → µ+νµ, µ
+ → e+ν̄µνe)? Justify

why. We neglect the mass of the positron with re-
spect to the anti-muon mass and the positron energy
(mec

2 � Eµ→e
e ,mµc

2).
iii. (2 pts) Both types of pion decay have a measur-
able positron at the end. Sketch the temporal distri-
bution of positrons from “π → e” and “π → µ→ e”
decays (Nπ→e

e (t) and Nπ→µ→e
e (t)). The time of the

pion stop is taken as the reference t = 0.
Part C. Detector system (5 points)
The experiment consists of two detectors. The
beam hits detector A, which stops pions but is shot
through by anti-muons and positrons. It measures
the arrival time of the pions. Detector B is located
to the side of detector A. When a positron hits
detector B, the energy of the positron is distributed
in a cylindrical volume with a diameter of a few
cm. Detector B measures both the energy emitted
by the positron (energy deposition, Edep) as well as
the time te of the positron.

A

B

π

e

i. (2 pts) It happens that the energy deposition
Edep measured by detector B is often smaller than
the energy of the positron. For what reasons can
this happen? Name two.
ii. (2 pts) When a pion decays to a muon, it is
stopped within 13ps. Which part of the anti-muons
decays in flight, i.e. faster than 13ps?
iii. (1 pt) In cT ≈ 1% of the “π → e” decays, the
measured energy of the positron (energy deposit)
is so low that it cannot be distinguished from a
positron of a “π → µ → e” decay. For anti-muon
decays in flight (“Decay in Flight”, DIF), no dif-
ference in the time distribution can be determined.
Anti-muon decays in flight and “π → e” decays with
large energy loss are therefore hardly distinguish-
able. What is the ratio pπ→e

low /pπ→µ→e
DIF of the two

decays?
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Part D. Re/µ (3.5 points)

The ratio Re/µ is calculated from the decay proba-
bilities of the pion to an anti-muon or to a positron

Re/µ =
p(π → e)

p(π → µ)
.

The aim of the experiment is to measure this ratio
with an accuracy of 0.01%. In a very simplified
form, the analysis can be described as follows:

Re/µ =
NH

NL
· (1 + cT ) ,

where NH is the number of (high-energy) “π → e”
decays, NL is the number of (low-energy) positrons

from “π → µ → e” decays and cT ≈ 1% is a cor-
rection factor for “π → e” decays with large energy
loss.

i. (1.5 pts) Which of the three quantities will con-
tribute least to the relative uncertainty of the ratio
when a large number of positrons are measured?
For what reason?
Hint: the (absolute) uncertainty on the number of
events N of such counting experiments is given by
σ =
√
N .

ii. (2 pts) How exactly must cT be known if a total
of 2× 1012 pion decays are measured? We neglect
the least important source of uncertainty identified
in the previous question.
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Long problems: solutions
Long problem 1.1: Stability of a rotating egg 16

Consider an egg represented by a homogeneous solid of revolution with profile f(t) = 1
2

√
t− t4

on domain t ∈ [a = 0, b = 1]. To transform this profile into physical units, a length factor ` is
applied. The egg has a density ρ.
The egg’s centre of mass is at x = c = 5

9`.

x

y

z

O
`

`f
(
x
`

)
cR(0)

R(`)

Part A. Warmup 0.5

i. Calculate the volume V of the egg. 0.5

Note: here and in what follows, the participants are allowed to write the prefactors in decimal notation.

V = `3
∫ b

a
πf2(x)dx.

0.25

Thus,

V = `3
∫ 1

0

1

4
π
(
x− x4

)
dx = `3

1

4
π

[
1

2
x2 − 1

5
x5
]1
0

=
3π

40
`3.

0.25

Part B. Moment of inertia 8.5

The moment of inertia of a solid about an axis A is given by

IA =

∫∫∫
V
ρD2

A(x, y, z)dV,

where DA(x, y, z) is the (perpendicular) distance from point (x, y, z) to axis A.

i. For a homogeneous ball of the same density ρ and volume V as the egg, determine the
moment of inertia along an axis through its centre. To do this, you can decompose the ball
into a set of rings of radius 0 ≤ s ≤ r, thickness ds and width dx, where r is the radius of the
ball. The integral then becomes

IB = 2πρ

∫ r

−r

∫ √
r2−x2

0
s3dsdx.
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Calculating such a multiple integral amounts to evaluating first the inner integral (over ds)
keeping x constant, then the outer integral over dx.
The result should be of the form

IB = kπρ`5,

where k is a dimensionless factor. 1.75

IB = 2πρ

∫ r

−r

∫ √
r2−x2

0
s3dsdx

= 2πρ

∫ r

−r

[
1

4
s4
]√r2−x2

0

dx

=
1

2
πρ

∫ r

−r

(
r2 − x2

)2 dx

=
1

2
πρ

∫ r

−r

(
r4 − 2r2x2 + x4

)
dx

=
1

2
πρ

[
r4x− 2

3
r2x3 +

1

5
x5
]r
−r

= πρ

[
r4x− 2

3
r2x3 +

1

5
x5
]r
0

= πρ

(
1− 2

3
+

1

5

)
r5

=
8

15
πρr5

1.25

A ball’s volume is V = 4
3πr

3, thus using the egg’s volume,

r =
3

√
9

160
`.

0.25

Therefore

IB =
1

60

(
9

20

) 5
3

πρ`5.

0.25

ii. Determine the moment of inertia Icx of the egg along the axis x through the centre of
mass c similar to the calculation for the ball above. 2.5

We can use the same formula as for the ball, changing the bounds for x to [a, b] and those for s to [0, f(x)]. 0.5

We also need to accomodate for the length factor, either by using the converted profile function, or more
simply by adding a global `5 factor. 0.5
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Icx = 2πρ`5
∫ b

a

∫ f(x)

0
s3dsdx

= 2πρ`5
∫ b

a

[
1

4
s4
]f(x)
0

dx

=
1

2
πρ`5

∫ b

a
(f(x))4 dx

=
1

32
πρ`5

∫ b

a

(
x− x4

)2 dx

=
1

32
πρ`5

∫ b

a

(
x2 − 2x5 + x8

)
dx

=
1

32
πρ`5

[
1

3
x3 − 1

3
x6 +

1

9
x9
]1
0

=
1

32
πρ`5

(
1

3
− 1

3
+

1

9

)
=

1

288
πρ`5

1.5

iii. Determine the moment of inertia IOz of the egg along the axis z passing through the
origin O. This time there is no symmetry of revolution about the axis and we cannot
consider the radius s. Instead, the integral can be solved in Cartesian coordinates, in the
form

IOz = `5
∫ b

a

∫ f(x)

−f(x)

∫ √
f2(x)−y2

−
√

f2(x)−y2
ρ
(
x2 + y2

)
dz dy dx.

You can use without proof that∫ |w|

−|w|

(
v2 + x2

)√
w2 − x2 dx =

1

8
πw2

(
4v2 + w2

)
.

2
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IOz = `5
∫ b

a

∫ f(x)

−f(x)

∫ √
f2(x)−y2

−
√

f2(x)−y2
ρ
(
x2 + y2

)
dz dy dx

= ρ`5
∫ b

a

∫ f(x)

−f(x)

(
x2 + y2

) ∫ √
f2(x)−y2

−
√

f2(x)−y2
dz dy dx

= ρ`5
∫ b

a

∫ f(x)

−f(x)

(
x2 + y2

)
[z]

√
f2(x)−y2

−
√

f2(x)−y2
dy dx

= 2ρ`5
∫ b

a

∫ f(x)

−f(x)

(
x2 + y2

)√
f2(x)− y2 dy dx

= 2ρ`5
∫ b

a

1

8
πf2(x)

(
4x2 + f2(x)

)
dx

=
1

16
πρ`5

∫ b

a

(
x− x4

)(
4x2 +

1

4

(
x− x4

))
dx

=
1

16
πρ`5

∫ b

a

(
1

4
x2 + 4x3 − 1

2
x5 − 4x6 +

1

4
x8
)

dx

=
1

16
πρ`5

[
1

12
x3 + x4 − 1

12
x6 − 4

7
x7 +

1

36
x9
]1
0

=
1

16
πρ`5

(
1

12
+ 1− 1

12
− 4

7
+

1

36

)
=

115

4032
πρ`5

2

iv. Deduce the moment of inertia Icz of the egg along the axis z passing through the centre
of mass c. 1

We can apply Steiner’s theorem: 0.5

Icz = IOz −mc2

= IOz − ρV

(
5

9

)2

`2

= IOz − ρ
3

40
π`3

25

81
`2

= IOz −
5

216
πρ`5

=

(
115

4032
− 5

216

)
πρ`5

=
65

12096
πρ`5

0.5

v. What is the value of Icy? Justify this. 0.5

Icy = Icz

0.25
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The y- and z-axes are equivalent due to the egg’s symmetry of revolution and alignment with the x-axis. 0.25
vi. Check that

Icx < IB < Icz < IOz

and justify why. 0.75
Computing the numerical values of the k factors:

0.0035 < 0.0044 < 0.0054 < 0.0285

0.25
For an equal mass (equal density and equal volume), the closer the mass distribution to the axis of
rotation, the smaller the moment of inertia. Therefore the egg along its axis has a smaller moment of
inertia than the ball, which has a smaller one than the egg taken perpendicular to its axis. From Steiner’s
theorem, a moment of inertia for a given axis direction will always be minimal when the axis crosses the
center of mass. 0.5
Icx, Icy and Icz are elements of what is called the solid’s tensor of inertia, which generalises
the moment of inertia to cases where the solid does not have rotational symmetry about its
axis of rotation.
In particular, if a solid of revolution rotates about an axis passing through its centre of
mass and inclined at an angle θ to its axis of symmetry, then its moment of inertia along
the axis of rotation will be

I = I‖ cos2(θ) + I⊥ sin2(θ) ,

where I‖ is the moment of inertia along the axis of symmetry and I⊥ is the moment of inertia
along an axis perpendicular to it and passing through the centre of mass.
Part C. Stability of the egg in rotation 7
At any point on a sufficiently regular curve g(x), we can define an osculating circle, which is
the circle that best approximates the curve at that point. Its radius is called the radius of
curvature of the curve at the given point, and has the value

R(x) =

(
1 +

(
dg
dx(x)

)2) 3
2

∣∣∣ d2g
dx2 (x)

∣∣∣ .

For the profile `f
(
x
`

)
of the egg, we obtain R(0) = 1

8` and R(`) = 3
8`.

We rotate the egg on its tip and wish to determine the minimum angular velocity ω required
for it not to tilt. To do this, consider the egg inclined at an angle θ � 1 to the vertical,
rotating about the vertical axis passing through its point of contact with the ground.

c

ω

θ

d

h
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i. Determine the height h(θ) of the centre of mass and its distance d(θ) from the axis of
rotation. The angle θ is small, so you can approximate the curvature of the tip of the egg
by that of its osculating circle. 1.5

By using the osculating circle’s approximation, the crossing between the axis of revolution and the axis of
rotation will be at the circle’s center, that is at a distance R(0) from the bottom. 0.5

Therefore
h(θ) = R(0) + (c−R(0)) cos(θ) =

(
1

8
+

31

72
cos(θ)

)
`

0.5

and
d(θ) = (c−R(0)) sin(θ) = 31

72
sin(θ) `.

0.5

Alternative solution: (1.5)

Alternatively, it is reasonable to Taylor-expand in θ to the second order. Note that the exact distribution
of points for this question and the next ones depends on where the Taylor-expansion, the substitution of m
and the simplifications are made. Use your best judgement when marking.

h(θ) = R(0) + (c−R(0)) cos(θ) =
(
1

8
+

31

72
cos(θ)

)
` ≈

(
1

8
− 31

144
θ2
)
`

and
d(θ) = (c−R(0)) sin(θ) = 31

72
sin(θ) ` ≈ 31

72
θ`.

(1.5)

ii. Determine the total mechanical energy of the egg E(θ), again assuming the angle is small. 2.5

The total mechanical energy consists of the gravitational potential energy plus the kinetic energy of
rotation plus the kinetic energy of translation of the center of mass. The two latter can be put together
by adapting the moment of inertia via Steiner’s theorem. 0.5

E(θ) = mgh(θ) +
1

2

(
Icx cos2(θ) + Icz sin2(θ) +md2(θ)

)
ω2

= ρ
3

40
π`3g

(
1

8
+

31

72
cos(θ)

)
`+

1

2

(
1

288
πρ`5 cos2(θ) + 65

12096
πρ`5 sin2(θ) + ρ

3

40
π`3

961

5184
sin2(θ) `2

)
ω2

=

(
3

40

(
1

8
+

31

72
cos(θ)

)
g +

1

2

(
1

288
cos2(θ) + 65

12096
sin2(θ) +

3

40

961

5184
sin2(θ)

)
`ω2

)
ρπ`4

=

(
1

960
(9 + 31 cos(θ)) g + 1

322560

(
560 cos2(θ) + 3109 sin2(θ)

)
`ω2

)
ρπ`4

=

(
1

960
(9 + 31 cos(θ)) g + 1

322560

(
560 + 2549 sin2(θ)

)
`ω2

)
ρπ`4

2

Part 1 - 11/24



SOLU
TIO

N

Physics Olympiad: Final Round 09 - 10.03.2024

Alternative solution: (2.5)

cos2(θ) ≈
(
1− 1

2
θ2
)2

= 1− θ2 + θ4 ≈ 1− θ2

(This is a particular case of Bernoulli’s inequality, resp. approximation.) (0.5)

E(θ) = mgh(θ) +
1

2

(
Icx cos2(θ) + Icz sin2(θ) +md2(θ)

)
ω2

≈ mg

(
1

8
− 31

144
θ2
)
`+

1

2

(
Icx
(
1− θ2

)
+ Iczθ

2 +m

(
31

144

)2

θ2`2

)
ω2

(2)

iii. Deduce the condition on ω for the egg to be in a stable rotation on its tip. What do you
notice? 2.5

The condition is that the second derivative of the energy around θ = 0 is positive (because the tip of the
egg is an equilibrium position, albeit an unstable one, we already know that the first derivative will be
zero, and this is also visible from the expression). 0.75

dE
dθ

(θ) =

(
− 31

960
sin(θ) g + 2549

161280
cos(θ) sin(θ) `ω2

)
ρπ`4

0.25

d2E

dθ2
(θ) =

(
− 31

960
cos(θ) g + 2549

161280

(
cos2(θ)− sin2(θ)

)
`ω2

)
ρπ`4

0.25

d2E

dθ2
(0) =

(
− 31

960
g +

2549

161280
`ω2

)
ρπ`4

0.25

ω >

√
161280

2549

31

960

g

`
=

√
5208

2549

g

`

0.5

We notice that the mass or the density of the egg don’t matter, only its shape and size. 0.5

Alternative solution: (2.5)
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dE
dθ

(θ) = −mg
31

72
`θ +

(
−Icxθ + Iczθ +m

(
31

72

)2

θ`2

)
ω2

d2E

dθ2
(θ) = −mg

31

72
`+

(
−Icx + Icz +m

(
31

72

)2

`2

)
ω2

d2E

dθ2
(0) = −mg

31

72
`+

(
−Icx + Icz +m

(
31

72

)2

`2

)
ω2

ω >

√√√√ mg`3172

−Icx + Icz +m
(
31
72

)2
`2

=

√√√√ 31
72

− Icx
m`2

+ Icz
m`2

+
(
31
72

)2 g`
=

√√√√ 31
72

− 1
288

40
3 + 65

12096
40
3 +

(
31
72

)2 g`
=

√
5208

2549

g

`

(2.5)

iv. Calculate the corresponding numerical value for ω by taking ` = 6 cm and the mass of
the egg m = 60 g. Also calculate the numerical value for the rotational frequency ν. 0.5

ω > ωmin =

√
5208

2549

9.806 65m · s−2

6 cm
≈ 18 s−1

0.25

ν =
ω

2π
>

ωmin
2π
≈ 3Hz

0.25
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Long problem 1.2: Steam Boat 16

A few years ago, as part of a team event, a group of students and volunteers made a boat
trip on the Lake Lucerne. Luckily they could make the trip on a steam boat where a data
sheet was attached next to the big steam engine. Inspired by this story, let us investigate
the steam engine and think about its design. In figure 1 such an engine is sketched.

Figure 1: Sketch of a steam engine. 1: The steam reservoir (blue) with constant pressure p1. 2: Cylinder
(diameter D, green and orange region) where the piston (3) moves in the orange region over the distance
L. 4: Minimal volume V0 (each of the green regions) that remains when the piston is at the corresponding
end of the cylinder. 5 and 6: Valves to control the steam flow from the reservoir (1) into the cylinder. 7
and 8: Valves to control the steam flow from the cylinder to the outside where there is the pressure p2.

Part A. Power 16

Some more information about the steam engine: it consists of a cylinder with diameter
D = 800mm where a steam pressure p1 = 13 bar (absolute pressure) is used. The piston slides
in the cylinder over a distance L = 1300mm. The engine completes 48 full cycles per minute.

i. Assume that when the piston moves from left to right, valves 5 and 8 are permanently
open (6 and 7 closed). The valves immediately change their state as soon as the piston
reaches the rightmost point and starts to move back to the left (the valves then switch again
immediately when the piston reaches the other turning point on the left). Estimate the
power of the steam engine as a function of the given variables and compute the corresponding
numerical value. If needed, make assumptions, justify and document them. 6

General note on the marking: this is an “open” style problem. Student solutions can be expected to be very
different from one another. The marking schemes presented here are only indicative examples. Use your
best judgement. Solutions that display a deeper insight into the physics underlying the problem can be
rewarded accordingly.

Since the valves are permanently open, there is a constant pressure p1 on the side connected with the
reservoir and p2 at the side connected to the outlet. We therefore are looking at an isobaric process (also
give the points if not explicitly stated). V0 can be assumed to be very small and the valves sufficiently large
that the pressure drop they cause is negligible.
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The power P is related to the total work of one cycle Wtot as P = fWtot with f the frequency. 0.5

The total work is Wtot = 2W with W the work done moving the piston in one direction. The factor 2
comes from the fact that work is done in both directions. We assume that the area taken by the connection
rod is negligible, otherwise the factor would be slightly smaller than 2 (fine is students assume a smaller
factor) 0.5

The frequency (in SI units) is given by (only analytic formula, also ok if implicitly correct, no points for
numerical value here) f = 48rot/min

60 s·min−1 = 0.8 s−1 0.5

The work W of one cylinder moving once along L is computed as W =
∫
FdL with F the total force

acting on the cylinder. 0.5

The force is given by F = pA with p the total pressure. 0.5

The total pressure is given by p = p1 − p2. 0.5

It is an isobaric process (it can also be considered as two simultaneous isobaric processes, one on each
side of the piston). 0.5

The integral leads to W = L (p1 − p2)A. 0.5

The area is given by A = D2π
4 (only analytic formula, also ok if implicitly correct, no points for numerical

value here). 0.5

Therefore the power is P = 2fL (p1 − p2)A. 0.5

We assume p2 = 1 bar (environment pressure). This value can vary, however has to be clearly stated. 0.5

The numerical value is P = 1250 kW. 0.5

ii. The control of the valves described in the previous task is quite inefficient. Indeed, when
the valves switch, they release the energy stored in the steam with high pressure p1 in the
environment (at pressure p2). To optimize the efficiency, we now change the valve control:
when the piston is at the leftmost point, valve 5 opens quickly, filling the left volume 4 with
steam of pressure p1. Then valve 5 closes again and stays closed for the rest of the cycle.
While the piston moves to the right, valve 8 is permanently open, while the other valves are
closed. Assume that the time ∆t during which the valve 5 is open is short, i.e. ∆t� T with
T the period of the piston cycle. When the piston moves the opposite way, the valves open
and close correspondingly. Estimate the power formally and numerically. If necessary, make
assumptions on unknown variables and quantities, justify and document them. 7

While the piston is moving, there is no new steam entering the cylinder and as such the pressure is not
constant anymore. We can model this either as a isothermal or adiabatic process (or a process in between).
For the marking, both solutions should be considered equally valid as long as a justification is provided.
0.5 points can be deduced if the choice of an isothermal process is not given a justification. Again we
can assume that the valves are sufficiently large and that their impact on the pressure is negligible. The
isobaric process happening on the “outgoing” side of the piston can either be treated separately or, as done
here, implicitly with the −p2dV part of the integrals.

Justification isothermal process: big heat capacity of cylinder and piston that transfer thermal energy to
the steam during the whole movement, thereby keeping it a constant temperature. 1

To calculate the work, we need the relation p(V ) which for the isothermal process is pV = const, hence
p(V ) = p1

V0
V . 1
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We have to make an assumption on V0. If well explained and reasonable, any assumption is ok. Here we
assume that V0 is such that the isothermal expansion drops the pressure from p1 to p2. This point is given
for explicitly mentioning the assumption, not its actual formal consequence (see next point). Note on p2:
They are supposed to take the one from the first subtask, however if they change their choice, no penalty
and no benefit. Furthermore if they didn’t state anything about p2 in the first subtask but explain it here,
give the points from the previous task aswell. 1

Our assumption formally leads to: p1V0 = p2 (V0 +AL) hence V0 =
p2AL
p1−p2

. 1

Work is then (points given for the formula): W =
∫ V0+AL
V0

(p(V )− p2)dV =
∫ V0+AL
V0

(
p1

V0
V − p2

)
dV . 0.5

Solving the integral gives W = p1V0 ln
(
V0+AL

V0

)
− p2AL. 1

Analytic solution for the power: P = 2f
[
p1

p2AL
p1−p2

ln
(
p1
p2

)
− p2AL

]
= 2fp2AL

(
p1

p1−p2
ln
(
p1
p2

)
− 1
)

. 0.5

Numerical solution: P = 186 kW. 1

Alternative solution: (7)

Alternatively for adiabatic or process in between (can be treated same but different κ):

Justification adiabatic process: Not a lot of heat exchange during expansion. (1)

To calculate the work, we need the relation p(V ), which for the adiabatic process is pV κ = const, hence
p(V ) = p1

(
V0
V

)κ. (1)

We have to make an assumption on V0. If well explained and reasonable, any assumption is ok. Here
we assume that V0 is such that the expansion drops the pressure from p1 to p2. This point is given for
explicitly mentioning the assumption, not its actual formal consequence (see next point). Note on p2:
They are supposed to take the one from the first subtask, however if they change their choice, no penalty
and no benefit. Furthermore if they didn’t state anything about p2 in the first subtask but explain it here,
give the points from the previous task aswell. (1)

Our assumption formally leads to: p
1/κ
1 V0 = p

1/κ
2 (V0 +AL) hence V0 =

p
1/κ
2 AL

p
1/κ
1 −p

1/κ
2

. (1)

Work is then (points given for the formula): W =
∫ V0+AL
V0

(p(V )− p2)dV =
∫ V0+AL
V0

(
p1
(
V0
V

)κ − p2

)
dV . (0.5)

Solving the integral gives W = p1V
κ
0

1
−κ+1

(
(V0 + LA)−κ+1 − V −κ+1

0

)
− p2AL. Note that to keep the same

amount of points with the isothermal process and since inserting variables here is quite tedious, there is no
need for further simplification (the points for the simplification in the isothermal process are awarded for
the choice of κ, see next point). (1)

Choice of κ: for adiabatic process κ = f+2
f with f = 6 for an (idealized) molecule with 3 translational and

3 rotational degrees of freedom (i.e. H2O). A process in between adiabatic and isothermal would have
〈κ〉 = f+2

f = 8
6 . (0.5)

Numerical solution: P = 226 kW. (1)

iii. The power on the data sheet is given2 as 331 kW. Compare this value with your
calculations from questions i. and ii. and discuss (qualitatively) your comparison (i.e. why
both values agree quite well or why they do not). 3

2Actually the steam engine on the boat contains 3 cylinders, the value here was already divided by 3.
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The answer might differ depending on the assumptions taken. Different options are presented, if other
good points are explained, give the points correspondingly.

A general aspect that has to be mentioned for this point (no matter about the other conclusions): our
calculations neglect friction and other dissipative and imperfect effects (0.5 points). Hence with respect to
the corresponding process, the calculated power is an overestimate (0.5 points). 1

The power calculated in i. is higher than the actual value not only because of dissipation (point above)
but also because it is a highly inefficient process that is not implemented. 0.5

Concerning the calculated power in ii.: For the remaining 1.5 points, there are different items that can be
mentioned, depending on the outcome of the calculations:
Similar assumptions as in the sample solution leading to a lower calculated value in ii.: One
can increase the power output by not relaxing to p2 = 1bar but to higher values, which is related to
having a bigger value of V0 than calculated.
The assumptions in part ii. are chosen such that it matches the real value: If it is explicitly
stated here that the assumption of ii. were made such that the values agree, give this 1.5 points for the
additional effort made to match the values.
If the calculated value in ii. is bigger than the real value because other assumptions were
made: A different choice of the assumptions would lead to a better agreement.
If there is a calculation error in ii. leading to a unreasonably different value: 1.5 points if
stated that the calculated value is unreasonable. 1.5
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Long problem 1.3: Pion Decays 16

Part A. Pion beam 3

For a particle physics experiment, (positive) pions (π+), which are transported in a beam with
momentum p = 65MeV/c, are required. However, pion production also creates anti-muons
(µ+) and positrons (e+), which all have the same charge and momentum. However, they
differ in mass (mπ = 140MeV/c2, mµ = 106MeV/c2, me = 0.511MeV/c2) and lifetime (τπ = 26 ns,
τµ = 2197 ns). The positron is stable in a vacuum.

i. At what speed are the individual particles traveling in the beam? 1.5

In relativistic kinematics, the velocity can be written as

v =
pc

E
=

pc√
c2p2 +m2c4

. (A.1)

Using the given numerical values for the momentum and the masses, one obtains the velocities for pions,
anti-muons and positrons. 0.75

vπ = 0.42 · c = 1.26× 108 m · s−1

0.25

vµ = 0.52 · c = 1.56× 108 m · s−1

0.25

ve ≈ c = 2.998× 108 m · s−1

0.25

Remark:
ve = 0.999969c

Results may be given in terms of c or m · s−1. If no points are awared for eq. (A.1), ve ≈ c can be
determined by highly relativistic approximation. This awards 0.5 points.

ii. The beam source produces all three types of particles at an interval T = 20 ns. This means
that all 20ns, pions, anti-muons and positrons are shot into the beam line. At what time
relative to the pions can anti-muons be seen in the experiment if the beamline is 16m long? 1.5

The time of flight difference for pions and muons can be written as

∆t =
l

vπ
− l

vµ
.

0.5

Inserting the velocities obtained in the previous question, one obtains

∆t = 24.6ns.

0.25
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Pions arrive 24.6ns after muons of the same production. One needs to consider that all particles are
produced every 20ns. 0.5

Muons thus arrive either 4.6ns prior to the pions or 15.4ns after. Full points for any of the two values. 0.25

Part B. Ways of decays 4.5

In the following, we consider two ways in which pions can decay. Anti-muons always decay
to positrons.

π+ → e+νe 0.01%
π+ → µ+νµ 99.99%
µ+ → e+ν̄µνe 100%

(Anti-)neutrinos νe, νµ, ν̄µ are (almost) massless particles that cannot be detected.
A pion can therefore either decay directly to a positron (“π → e”) or first to a muon, which
then decays to a positron (“π → µ→ e”). In the experiment, all pions are stopped. If the
pion decays to a muon, the latter is also stopped within a few picoseconds. All particles in
this part decay at rest.

i. What is the energy Eπ→e
e of a positron that comes directly from a pion decay (π → eνe)?

We neglect the mass of the positron with respect to the pion mass and the positron energy
(mec

2 � Eπ→e
e ,mπc

2). 1

Using the symmetry coming from the fact that we have a decay into two (approximately) massless particles,
one can expect the positron energy to be given by

Eπ→e
e ≈ mπ

2
.

0.75

Inserting the numerical value for mπ yields

Eπ→e
e ≈ 70MeV.

0.25

Alternative solution: (1)

Using that mass is a Lorentz invariant, and neglecting the electron mass, one finds thanks to momen-
tum conservation (from a pion decaying at rest) m2

π = ((Ee + Eνe)
2 = (Ee + |~pνe |)

2 = (Ee + |~pe|)2 ≈
(Ee + Ee)

2 = 4E2
e , which gives

Eπ→e
e ≈ mπ

2
.

(0.75)

Inserting the numerical value for mπ yields

Eπ→e
e ≈ 70MeV.

(0.25)

ii. What is the maximum energy Eµ→e
e,max of a positron if the pion first decays to an anti-muon

and the anti-muon then decays to a positron (π+ → µ+νµ, µ
+ → e+ν̄µνe)? Justify why. We
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neglect the mass of the positron with respect to the anti-muon mass and the positron energy
(mec

2 � Eµ→e
e ,mµc

2). 1.5

By momentum conservation from a muon assumed to decay at rest, we expect to have the highest positron
energy when both neutrinos point in the same direction (note: other justifications, as long as they are
sensible, are accepted). 0.75

We are thus back in the same situation as in the previous question, but with mπ being replaced by mµ:

Eµ→e
e,max ≈

mµ

2
.

0.5

Inserting the numerical value for mµ gives

Eµ→e
e,max ≈ 53MeV.

0.25

iii. Both types of pion decay have a measurable positron at the end. Sketch the temporal
distribution of positrons from “π → e” and “π → µ → e” decays (Nπ→e

e (t) and Nπ→µ→e
e (t)).

The time of the pion stop is taken as the reference t = 0. 2

We expect something of the following qualitative form (using 1/10 of the muon lifetime)

t

nπ→e
e (t)

nπ→µ→e
e (t)

For reference, the actual time spectrum

t (in ns)0ns 500ns

nπ→e
e (t)

nπ→µ→e
e (t)
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Indeed, the π → e case is a typical exponentional decay that qualitatively goes as nπ→e
e (t) ∝ e−t/τπ . The

π → µ→ e case is an exponential decay from anti-muons which are themselves the result of an exponential
decay. Qualitatively we thus expect something of the form nπ→µ→e

e (t) ∝ e−t/τµ − e−t/τπ .
Derivation (not required, no points):
Let Nµ be the number of muons at a given time. The number of positrons from muon decay is thus

nπ→µ→e
e (t) ∝ Nµ. (B.1)

Also, the pions as primary particles follow an exponential decay. Thus the change in number of muons is
equal to the new muons from pion decay minus the muons that decay. As each muon has a given decay
probability, this is proportional to the total number of muons. Let N0 be the total number of pions decaying
to muons.

Ṅµ =
N0

τπ
e−t/τπ − 1

τµ
Nµ

This equation can be approached with the ansatz

Nµ = Ae−t/τµ +Be−t/τπ

and thus
−A

τµ
e−t/τµ − B

τπ
e−t/τπ =

N0

τπ
e−t/τπ − 1

τµ

(
Ae−t/τµ +Be−t/τπ

)
−B

τπ
e−t/τπ =

N0

τπ
e−t/τπ − 1

τµ
Be−t/τπ

−B

τπ
=

N0

τπ
− 1

τµ
B

−
(

1

τπ
− 1

τµ

)
B =

N0

τπ

−τµ − τπ
τµτπ

B =
N0

τπ

B = −N0
τµ

τµ − τπ
.

From the condition that the pion first has to decay to a muon and thus Nµ(0) = 0, it follows that A = −B.
And thus, plugging into eq. (B.1),

nπ→µ→e
e (t) ∝ e−t/τµ − e−t/τπ .

Caption 0.5
Exp. decay for π → e with τ = τπ 0.5
Exp. rise with τ = τπ for π → µ→ e 0.5
Exp. decay for π → µ→ e with τ = τµ 0.5
Part C. Detector system 5
The experiment consists of two detectors. The beam hits detector A, which stops pions
but is shot through by anti-muons and positrons. It measures the arrival time of the pions.
Detector B is located to the side of detector A. When a positron hits detector B, the energy
of the positron is distributed in a cylindrical volume with a diameter of a few cm. Detector
B measures both the energy emitted by the positron (energy deposition, Edep) as well as
the time te of the positron.
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A

B

π

e

i. It happens that the energy deposition Edep measured by detector B is often smaller than
the energy of the positron. For what reasons can this happen? Name two. 2

For each plausible reason a point is awarded. Possibilities are:

• Energy loss A

• Energy deposit cylinder exceeds B. (Lateral Energy Leakage)

• Positron passes B partially.

• Positron reflects on B.

• Positron-electron annihilation with escaping gamma

• Positron interacts with nuclei (or any other particle in the shower, e.g. bremsstrahlung + photonuclear
interaction)

• Positron doesn’t hit B, annihiliates in A and only a gamma hits B

• ...

Corrector should decide at which point two arguments are the same with a different wording and when
they should be considered as different arguments. This should be two easy points for students that have
some creative suggestions. 2

ii. When a pion decays to a muon, it is stopped within 13ps. Which part of the anti-muons
decays in flight, i.e. faster than 13ps? 2

The probability for an anti-muon decay between time t1 and t2 can be written as

p(t1 < te < t2) =
1

N

∫ t2

t1

N(t)dt,

where N is some normalization factor (such that integrating from 0 to ∞ yields a probability of 1) and
N(t) is the time distribution. 0.5

In the case of decays, the distribution N(t) is an exponentially decaying distribution. The normalization
constant can be obtained by computing the integral from 0 to ∞ . One then obtains

p(t1 < te < t2) =
1

τµ

∫ t2

t1

e−t/τµdt.
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0.5

Computing the integral then yields

p(t1 < te < t2) =
[
−e−t/τµ

]t2
t1

0.25

and further
p(t1 < te < t2) =

(
e−t1/τµ − e−t2/τµ

)
.

0.25

Inserting the numerical values then gives

p(t1 < te < t2) ≈ 5.9× 10−6.

0.5

The first 0.5P are for the normalisation, the second 0.5P for the integral over the exp. function. In case
the normalisation was forgotten, deduct 0.5P

iii. In cT ≈ 1% of the “π → e” decays, the measured energy of the positron (energy deposit)
is so low that it cannot be distinguished from a positron of a “π → µ → e” decay. For
anti-muon decays in flight (“Decay in Flight”, DIF), no difference in the time distribution
can be determined. Anti-muon decays in flight and “π → e” decays with large energy loss
are therefore hardly distinguishable. What is the ratio pπ→e

low /pπ→µ→e
DIF of the two decays? 1

The probability to get a low-energy π → e decay over all the decays is the product of the probability to
get a direct π → e decay and of the one to get a low-energy decay in such a case, cT :

pπ→e
low = 1× 10−2 · 1× 10−4 = 1× 10−6

0.5

The probability for muon DIF was computed above.

Using our results from above, one finds

pπ→e
low /pπ→µ→e

DIF = 0.17

0.5

Part D. Re/µ 3.5

The ratio Re/µ is calculated from the decay probabilities of the pion to an anti-muon or to a
positron

Re/µ =
p(π → e)

p(π → µ)
.

The aim of the experiment is to measure this ratio with an accuracy of 0.01%. In a very
simplified form, the analysis can be described as follows:

Re/µ =
NH

NL
· (1 + cT ) ,
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where NH is the number of (high-energy) “π → e” decays, NL is the number of (low-energy)
positrons from “π → µ → e” decays and cT ≈ 1% is a correction factor for “π → e” decays
with large energy loss.

i. Which of the three quantities will contribute least to the relative uncertainty of the ratio
when a large number of positrons are measured? For what reason?
Hint: the (absolute) uncertainty on the number of events N of such counting experiments is
given by σ =

√
N . 1.5

The answer is NL. 0.5

The reason is that NL � NH 0.5

and that such counting experiments have a (Poisson distribution with) relative uncertainty on the number
of events given by

σ

N
=

1√
N

(D.1)

0.25

while the uncertainty σT on cT a priori does not change with the number of measured events. 0.25

ii. How exactly must cT be known if a total of 2×1012 pion decays are measured? We neglect
the least important source of uncertainty identified in the previous question. 2

In case the 0.25P were missed above for eq. (D.1), here is another chance:

σH
NH

=
1√
NH

(0.25).

By uncertainty propagation and neglecting the uncertainty coming from NL, one gets(
σR
Re/µ

)2

=

(
σH
NH

)2

+

(
σT

1 + cT

)2

.

0.5

We then isolate σT with intermediate step(
σT

1 + cT

)2

=

(
σR
Re/µ

)2

− 1

NH

0.5

to finally get

σT = (1 + cT )

√(
σr

Re/µ

)2

− 1

NH
.

0.5

Inserting the numerical values and noting that NH = 2× 1012 · 0.01% · (1− cT ), one finds

σT ≈ 7× 10−5.

0.5
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Natural constants

Caesium hyperfine frequency ∆νCs 9.192 631 770 ×109 s−1

Speed of light in vacuum c 2.997 924 58 ×108 m · s−1

Planck constant h 6.626 070 15 ×10−34 kg ·m2 · s−1

Elementary charge e 1.602 176 634 ×10−19 A · s
Boltzmann constant kB 1.380 649 ×10−23 K−1 · kg ·m2 · s−2

Avogadro constant NA 6.022 140 76 ×1023 mol−1

Luminous efficacy of radiation Kcd 6.83 ×102 cd · kg−1 ·m−2 · s3 · sr
Magnetic constant µ0 1.256 637 062 12(19) ×10−6 A−2 · kg ·m · s−2

Electric constant ε0 8.854 187 812 8(13) ×10−12 A2 · kg−1 ·m−3 · s4

Gas constant R 8.314 462 618... K−1 · kg ·m2 ·mol−1 · s−2

Stefan-Boltzmann constant σ 5.670 374 419... ×10−8 K−4 · kg · s−3

Gravitational constant G 6.674 30(15) ×10−11 kg−1 ·m3 · s−2

Electron mass me 9.109 383 701 5(28) ×10−31 kg
Neutron mass mn 1.674 927 498 04(95) ×10−27 kg

Proton mass mp 1.672 621 923 69(51) ×10−27 kg
Standard acceleration of gravity gn 9.806 65 m · s−2
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Short questions
Duration: 60 minutes
Marks: 24 points (6× 4)

Start each problem on a new sheet in order to ease the correction.

Short question 2.1: Brachistochrone curve (4 points)
A brachistochrone is a curve between two points along which a body can move under gravity in a shorter
time than for any other curve, when neglecting friction and air resistance, which we do in this problem.
We consider two points, A and C, connected by a brachistochrone ramp (which means that a point mass
moving along the ramp will take the path of least possible time), as illustrated in figure 1.
A point B lies between A and C on the brachistochrone curve. A small ball of negligible radius and mass m
moves along the brachistochrone ramp, starting from rest at point A.
At point B, the norm of its velocity is vb and the acute angle between its velocity and the vertical y-axis is
θb ∈

[
0, π2

]
.

x

y

A

C

Bh

Figure 1: Brachistochrone curve between points A and C.

i. (0.5 pts) What is the speed v (norm of the velocity) of the particle as a function of the vertical
displacement ∆y from the point B?
ii. (2 pts) What is the angle θc between the velocity and the vertical when the ball arrives at point C? Write
your answer in terms of θb, vb, h (the height difference between B and C), g (the gravitational acceleration)
and m.
Hint: Find the relationship between the norm of the velocity and the angle with the vertical.
iii. (1.5 pts) Consider now that the ball at point A has a initial vertical velocity with norm va. Would the
ramp still be a path of least time in this case? In other words: is there another ramp shape that would get
the ball from point A to point C in a shorter amount of time if the ball had a given initial kinetic energy (the
initial velocity has norm va but the direction can be chosen to minimise the time)? Explain your reasoning.

Short question 2.2: NEOWISE (4 points)
Comet C/2023 F3 (NEOWISE) passed close to the Sun in 2020. Its orbital period has been estimated at
6800 years. Make the calculations in astronomical units and in years.
i. (2 pts) Estimate the comet’s maximum distance from the Sun.
ii. (2 pts) Estimate the comet’s speed at half of the maximum distance.
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Short question 2.3: Pendulum (4 points)
Emmy wants to build a pendulum clock. To do this, she needs a pendulum with a period of exactly T = 2.0 s.
In particular, Emmy wants the period of the pendulum to depend as little as possible on the temperature.
Emmy has found the following construction plan on the internet:

Figure 1: The pendulum is suspended at point p and consists of rods I-III, cross-connections (black), and the
pendulum mass M . Bars I and II are duplicated for reasons of stability; we assume that bars with the same
number are identical.

Emmy knows that she has to choose different materials and lengths for the three rods I-III. She wants bars I
and III to be the same length, i.e. LI = LIII and, so that the cross-connections do not touch, LI > LII must
apply. Emmy has the following materials with length expansion coefficient α available:

Material α/K−1 at 20 ◦C
Aluminium 23× 10−6

Invar 1.0× 10−6

Brass 19× 10−6

Steel 13× 10−6

Table 2

Assume that the mass of the rod is negligible compared to the weight of the pendulum mass M and that the
pendulum mass is approximately a point mass.
i. (3 pts) Specify a combination of materials and lengths of rods I-III that fulfill Emmy’s conditions.
ii. (1 pt) Emmy has noticed that the period of the pendulum still changes slightly with large temperature
differences despite your help. Do you know what could be causing this? Give two possible causes.
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Short question 2.4: A leak on the space station (4 points)
We are on a space station with a volume of V = 500m3 in the middle of space. The temperature is a cosy
T = 25 ◦C and the air pressure is p = 1 bar.
i. (1.5 pts) What is the square root of the mean square velocity vrms =

√
〈v2〉 of a Nitrogen (N2,

M = 0.028 kg ·mol−1) molecule?
ii. (2.5 pts) Astronaut Adrian now discovers a leak of size A = 0.001m2. Express the number of molecules
that fly into space per unit time ∆N

∆t as a function of A, 〈|v⊥|〉, the total number of gas molecules N and V .
Then determine the time before more than the fraction 10−5 of the air has escaped. You may assume that
the air pressure in the space station does not change significantly during the process. You may also use that
the change in both the volume and the number of molecules is small with respect to the total volume and
total number of molecules.
Hint: the relation 〈|v⊥|〉 =

√
2
3πvrms applies, where v⊥ stands for the velocity along the direction perpendicular

to the hole. To estimate the following quantities, we assume for simplicity that half of the gas molecules
have a velocity v⊥ = 〈|v⊥|〉 and the other half have a velocity v⊥ = −〈|v⊥|〉.

Short question 2.5: Coupled RLC circuit (4 points)
Similarly to mechanical oscillators, alternating current circuits can be coupled. Consider the circuit shown in
figure 1, where both current loops are coupled through the mutual inductance L12. The goal of this exercise
is to study the allowed frequencies of this system.

R1

C1

L1
L12←→

R2

C2

L2

Figure 1: Two coupled RLC circuits with respective resistance Rn, inductance Ln, capacitance Cn for
n = 1, 2 and mutual inductance L12.

i. (1.5 pts) Write down Kirchhoff’s loop rule for both circuits separately, taking the mutual inductance L12

into account, and find a second order system of coupled differential equations for I1(t) and I2(t), the current
flowing in the first and second loop, respectively.
ii. (1.5 pts) Using the ansatz In(t) = I0,ne

iωt for n = 1, 2, where i is the imaginary unit, show that the
following equation holds for the frequencies of the system:[

R1 + i

(
ωL1 −

1

ωC1

)][
R2 + i

(
ωL2 −

1

ωC2

)]
= −ω2L2

12.

iii. (1 pt) Assuming now for simplicity that R1 = R2 = 0, L1 = L2 = L and C1 = C2 = C, determine the
two allowed frequencies ω1 and ω2 of the system as a function of L12

L and ω0, the resonance frequency of an
LC circuit.

Short question 2.6: Four polarizers (4 points)
i. (4 pts) Four linear polarizers are placed in a row. The polarization axis of the first one is rotated by 90◦

with respect to the fourth one. The two intermediate polarizers can be rotated to adjust the direction of
their polarization axes. An unpolarized light beam of intensity I0 is directed onto the first polarizer. What
is the maximal intensity of light exiting the fourth polarizer?
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Short questions: solutions
Short question 2.1: Brachistochrone curve 4
A brachistochrone is a curve between two points along which a body can move under gravity
in a shorter time than for any other curve, when neglecting friction and air resistance, which
we do in this problem.
We consider two points, A and C, connected by a brachistochrone ramp (which means that
a point mass moving along the ramp will take the path of least possible time), as illustrated
in figure 1.
A point B lies between A and C on the brachistochrone curve. A small ball of negligible
radius and mass m moves along the brachistochrone ramp, starting from rest at point A.
At point B, the norm of its velocity is vb and the acute angle between its velocity and the
vertical y-axis is θb ∈

[
0, π2

]
.

x

y

A

C

Bh

Figure 1: Brachistochrone curve between points A and C.

i. What is the speed v (norm of the velocity) of the particle as a function of the vertical
displacement ∆y from the point B? 0.5
Using the conservation of energy, we have for a fourth point D on the ramp Eb = Ed, which gives

mgyb +
1

2
mv2b = mgyd +

1

2
mv2d

⇒ 1

2
mv2d =

1

2
my2b −mg∆y

⇒ v = vd =
√
v2b − 2g∆y.

0.5
ii. What is the angle θc between the velocity and the vertical when the ball arrives at point
C? Write your answer in terms of θb, vb, h (the height difference between B and C), g (the
gravitational acceleration) and m.
Hint: Find the relationship between the norm of the velocity and the angle with the vertical. 2
The particle is following the path of shortest time. We know from Fermat’s principle of least time that
light travels on the path of least possible time between two points. This tells us that the particle will
follow the same path that light would (0.5 point for the idea of using optics). We know from Snell’s law
that sin(θ)

v = K where K is a constant (0.5 point). Using the values from point B we obtain the value

K =
sin(θb)
vb

.
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Using the result from the previous question, the velocity at point C will be given by

vc =
√

v2b − 2gh,

1
which gives (any form which is correct and is written as a function of the required variables gives the full
point)

θc = arcsin(Kvc) = arcsin
(

sin(θb)
vb

√
v2b − 2gh

)
= arcsin

(
sin(θb)

√
1− 2gh

v2b

)
.

1
iii. Consider now that the ball at point A has a initial vertical velocity with norm va. Would
the ramp still be a path of least time in this case? In other words: is there another ramp
shape that would get the ball from point A to point C in a shorter amount of time if the
ball had a given initial kinetic energy (the initial velocity has norm va but the direction can
be chosen to minimise the time)? Explain your reasoning. 1.5
The answer is no. 0.5
The marking scheme will detail two possible ways to answer the question. Any reasoning that makes sense,
as long as it is well thought out and well explained is accepted. The level of detail should ressemble the
one of the solutions presented in the marking scheme to achieve full points.

The first way to answer this question is using optics. As we saw before, the path of the ball should follow
Snell’s law of refraction, meaning that

K =
sin(θa)
va

.

Let us assume that the curve of least time in the case of a non-vanishing initial velocity is the brachistochrone
curve. Then, at point A, we have θa = 0 (a non-vanishing angle would correspond to sliding on an inclined
plane for small x, which for a fixed height difference takes more time than a free fall trajectory), which
gives

K =
0

va
= 0

(note that this was not the case before because with va = 0 we have an undetermined ratio “K = 0
0” at

the point A). Therefore, to follow Snell’s law given the initial conditions, the angle θ should be equal to 0
throughout the whole curve, which is not possible, except if C is right under A, which is not the case here.
So, the brachistochrone can only be the correct curve in the trivial case where C lies just below A if there
is a non-vanishing initial velocity. 1
Alternative solution: (1.5)
The second way of solving this question is to try to understand what would happen when we make va very
big. Let us consider the case

v2a � −2g∆y,

where ∆y is taken to be negative. We know from before that by the conservation of energy√
v2a − 2g∆y − va = ∆v,

which yields
∆v ≈ 0

with our assumptions. The ball will thus have approximately the same speed throughout its path. The path
of shortest time between two points for an object moving with constant speed is a straight line, so we can
see that as we increase the value of va, the path of shortest time will approach a straight line, meaning
that the initial velocity has an impact on the path of shortest time under gravity. (1.5)
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Short question 2.2: NEOWISE 4

Comet C/2023 F3 (NEOWISE) passed close to the Sun in 2020. Its orbital period has been
estimated at 6800 years. Make the calculations in astronomical units and in years.

i. Estimate the comet’s maximum distance from the Sun. 2

We can use Kepler’s third law and compare to the Earth, as they both orbit the Sun:

a3E
T 2

E
=

a3N
T 2

N
=

GM

4π2
.

0.5

With such a high period, the trajectory is very excentric and we can approximate the maximum distance
as twice the semi-major axis. 0.5

This gives

d ≈ 2aN = 2aE

(
TN
TE

) 2
3

.

0.5

aE is roughly equivalent to an astronomical unit and TE is one year, so

d ≈ 2 · 1 au · (6800)
2
3 ≈ 718 au.

0.5

The actual value (taking the excentricity properly into account) has been estimated at about 710 au.

ii. Estimate the comet’s speed at half of the maximum distance. 2

We can take the trajectory as approximately one-dimensional and assume the speed to be zero at the
farthest point, and e.g. use energy conservation. 0.5

−GMm

d
= −GMm

d
2

+
1

2
mv2,

so

v =

√
2GM

d
.

0.5

We know from Kepler’s third law that GM = 4π2 a3E
T 2

E
. 0.5

So

v = 2π
1

TE

√
2a3E
d
≈ 0.332 au · a−1.

0.5
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Short question 2.3: Pendulum 4
Emmy wants to build a pendulum clock. To do this, she needs a pendulum with a period of
exactly T = 2.0 s. In particular, Emmy wants the period of the pendulum to depend as little
as possible on the temperature. Emmy has found the following construction plan on the
internet:

Figure 1: The pendulum is suspended at point p and consists of rods I-III, cross-connections (black), and
the pendulum mass M . Bars I and II are duplicated for reasons of stability; we assume that bars with the
same number are identical.

Emmy knows that she has to choose different materials and lengths for the three rods
I-III. She wants bars I and III to be the same length, i.e. LI = LIII and, so that the
cross-connections do not touch, LI > LII must apply. Emmy has the following materials with
length expansion coefficient α available:

Material α/K−1 at 20 ◦C
Aluminium 23× 10−6

Invar 1.0× 10−6

Brass 19× 10−6

Steel 13× 10−6

Table 2

Assume that the mass of the rod is negligible compared to the weight of the pendulum mass
M and that the pendulum mass is approximately a point mass.
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i. Specify a combination of materials and lengths of rods I-III that fulfill Emmy’s conditions. 3

We have T = 2π
√

Ltot/g, hence we find Ltot =
(
T
2π

)2
g. For T = 2.0 s we get Ltot = 99 cm (numerical

value is not required). 0.5

The length L of any rod goes as L(1 + α∆τ) given a temperature difference ∆τ . (The points are also
given if this fact is used but not explicitly stated.) 0.5

We have
Ltot = LI − LII + LIII (3)

In order for the pendulum to be as precise as possible, we want the change in length to be zero. The
change in length given a temperature difference ∆τ with coefficients αI, αII, αIII is given by:

∆Ltot = (LIαI − LIIαII + LIIIαIII)∆τ (4)

using LI = LIII and requiring ∆Ltot = 0 for any ∆τ we find the following condition:

LI(αI + αIII) = LIIαII (5)

1

The constraint LI > LII implies that αI + αIII > αII. The possible combinations of materials (up to
exchanging I and III) are listed in the table below. They only need to list one (correct) variant. (0.25) for a
correct choice of materials, (0.75) for the correct lengths.

I II III LI = LIII LII

Invar Aluminium Invar 23
44Ltot = 52 cm 2

44Ltot = 4.5 cm
Invar Messing Invar 19

36Ltot = 52 cm 2
36Ltot = 5.5 cm

Invar Stahl Invar 13
24Ltot = 54 cm 2

24Ltot = 8.3 cm
Invar Aluminium Stahl 23

32Ltot = 71 cm 14
32Ltot = 43 cm

Invar Messing Stahl 19
24Ltot = 78 cm 14

24Ltot = 58 cm
Invar Aluminium Messing 23

26Ltot = 88 cm 20
26Ltot = 76 cm

1

ii. Emmy has noticed that the period of the pendulum still changes slightly with large
temperature differences despite your help. Do you know what could be causing this? Give
two possible causes. 1

Possible reasons are: 1. Thermal expansion is only approximately linear and the approximation gets worse
for large temperature differences. 2. The rods also have masses, which shift and change the period of the
pendulum. 3. Thermal expansion also affects other parts of the clock, which can decrease the precision.
Other sensible answers are also accepted. Give 0.5 points if only one reason is given. 1
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Short question 2.4: A leak on the space station 4
We are on a space station with a volume of V = 500m3 in the middle of space. The
temperature is a cosy T = 25 ◦C and the air pressure is p = 1 bar.

i. What is the square root of the mean square velocity vrms =
√
〈v2〉 of a Nitrogen (N2,

M = 0.028 kg ·mol−1) molecule? 1.5
The rms velocity is

vrms =

√
5RT

M
.

1
Either one knows the formula by heart or it can be derived from Maxwell’s distribution or equipartition

1

2
mv2rms =

1

2
m〈v2x + v2y + v2z〉 =

5

2
kBT

where we have 5 degrees of freedom due to two additional rotational degrees of freedom at room temperature
for diatomic nitrogen gas.

We get a numerical value vrms = 665m · s−1. 0.5

ii. Astronaut Adrian now discovers a leak of size A = 0.001m2. Express the number of
molecules that fly into space per unit time ∆N

∆t as a function of A, 〈|v⊥|〉, the total number
of gas molecules N and V . Then determine the time before more than the fraction 10−5

of the air has escaped. You may assume that the air pressure in the space station does
not change significantly during the process. You may also use that the change in both the
volume and the number of molecules is small with respect to the total volume and total
number of molecules.
Hint: the relation 〈|v⊥|〉 =

√
2
3πvrms applies, where v⊥ stands for the velocity along the

direction perpendicular to the hole. To estimate the following quantities, we assume for
simplicity that half of the gas molecules have a velocity v⊥ = 〈|v⊥|〉 and the other half have a
velocity v⊥ = −〈|v⊥|〉. 2.5
A particle leaves through the hole during a time ∆t in case it is within a distance ∆x = ∆tv⊥ and it is
moving towards the hole. In average we get

∆x = ∆t〈|v⊥|〉.

0.5
So we find the exiting particles by multiplying the corresponding volume with the particle density

∆n

∆t
=

1

2∆t
∆V

n

V
=

1

2
A〈|v⊥|〉

n

V
.

The factor 1
2 is because half of the particles are moving away from the hole. 1

In our case we require
∆n = cn

where c = 10−5. 0.5
We can solve for ∆t and get

∆t =
2cV

A〈|v⊥|〉
=

2cV

A
√

2
3πvrms

= 33ms.

0.5
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Short question 2.5: Coupled RLC circuit 4
Similarly to mechanical oscillators, alternating current circuits can be coupled. Consider the
circuit shown in figure 1, where both current loops are coupled through the mutual inductance
L12. The goal of this exercise is to study the allowed frequencies of this system.

R1

C1

L1
L12←→

R2

C2

L2

Figure 1: Two coupled RLC circuits with respective resistance Rn, inductance Ln, capacitance Cn for
n = 1, 2 and mutual inductance L12.

i. Write down Kirchhoff’s loop rule for both circuits separately, taking the mutual inductance
L12 into account, and find a second order system of coupled differential equations for I1(t)
and I2(t), the current flowing in the first and second loop, respectively. 1.5
The Kirchoff’s loop rule (voltage law) gives

L1
dI1
dt

+
Q1

C1
+R1I1 = −L12

dI2
dt

,

L2
dI2
dt

+
Q2

C2
+R2I2 = −L12

dI1
dt

.

1
To find a second order coupled system, one can take the time derivative of the above and get

L1
d2I1
dt2

+R1
dI1
dt

+
1

C1
I1 = −L12

d2I2
dt2

,

L2
d2I2
dt2

+R2
dI2
dt

+
1

C2
I2 = −L12

d2I1
dt2

.

0.5

ii. Using the ansatz In(t) = I0,ne
iωt for n = 1, 2, where i is the imaginary unit, show that the

following equation holds for the frequencies of the system:[
R1 + i

(
ωL1 −

1

ωC1

)][
R2 + i

(
ωL2 −

1

ωC2

)]
= −ω2L2

12.

1.5
Because of the coupling, the frequencies of both RLC loops are equal. Inserting the ansatz in the system
from the previous question gives (

−L1ω
2 + iR1ω +

1

C1

)
I1 = L12ω

2I2,(
−L2ω

2 + iR1ω +
1

C2

)
I2 = L12ω

2I1.
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Multiplying both equations then yields[
−L1ω

2 + iR1ω +
1

C1

] [
−L2ω

2 + iR1ω +
1

C2

]
I1I2 = L2

12ω
4I1I2.

This has only non-trivial solutions for non-vanishing currents I1 and I2, so one can divide both sides by
I1I2 and multiply both sides by i2

ω2 in order to reach the desired form:[
R1 + i

(
ωL1 −

1

ωC1

)][
R2 + i

(
ωL2 −

1

ωC2

)]
= −ω2L2

12.

1.5

iii. Assuming now for simplicity that R1 = R2 = 0, L1 = L2 = L and C1 = C2 = C, determine
the two allowed frequencies ω1 and ω2 of the system as a function of L12

L and ω0, the resonance
frequency of an LC circuit. 1

The resonance frequency of a LC circuit is given by ω0 =
1√
LC

. 0.25

In this simplified case, the previous equation for the frequency becomes(
Lω − 1

ωC

)2

= L2
12ω

2

⇒ ±Lω ∓ 1

ωC
= L12ω

⇒ ω2 = ± 1

(±L− L12)C
=

1

(L∓ L12)C

with solutions

ω1 =

√
1

(L− L12)C
=

√
ω2
0

1− L12
L

,

ω2 =

√
1

(L+ L12)C
=

√
ω2
0

1 + L12
L

.

0.75
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Short question 2.6: Four polarizers 4

i. Four linear polarizers are placed in a row. The polarization axis of the first one is rotated
by 90◦ with respect to the fourth one. The two intermediate polarizers can be rotated to
adjust the direction of their polarization axes. An unpolarized light beam of intensity I0 is
directed onto the first polarizer. What is the maximal intensity of light exiting the fourth
polarizer? 4

After the first polarizer the intensity is 1
2I0. 0.25

By Malus’ law, if linearly polarized light of intensity I1 passes through a linear polarizer with axis tilted
by angle θ with respect to the polarization axis of the incoming light, the transmitted beam will have
intensity I1 cos(θ)2. 0.5

If the intermediate polarizers are tilted by θ1 and θ2 with respect to the first polarizer, the transmitted
light has intensity It =

1
2I0 cos(θ1)2 cos(θ2 − θ1)

2 cos
(
π
2 − θ2

)2. 1

For the optimal choice of θ1, θ2 we have ∂It
∂θ1

= ∂It
∂θ2

= 0. 1

Note that
∂It
∂θ1
∝ sin(θ1) cos(θ2 − θ1)− cos(θ1) sin(θ2 − θ1)

and
∂It
∂θ2
∝ sin(θ2 − θ1) cos

(π
2
− θ2

)
− cos(θ2 − θ1) sin

(π
2
− θ2

)
.

Hence, the optimal choice is θ1 =
π
6 , θ2 = π

3 . 1

The optimal intensity of the transmitted light therefore is 1
2I0 cos

(
π
6

)6 ≈ 0.21I0. 0.25
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