14.07.2021

Knowledge

Elektromotoren selber bauen

SimplyScience zeigt Ihnen, wie Sie mit Ihren Schülerinnen und Schülern einen Motor bauen können. Ganz schlicht: mit Kupferlackdraht, Batterie, Magneten und ein paar weiteren Bestandteilen.

[Translate to English:] Gleichstrommotor aus Kupferlackdraht, Batterie und Magneten. Bild: Redaktion SimplyScience.ch

Material:

  • Zange
  • beschichteter Kupferlackdraht
  • Schmirgelpapier
  • 1 neue Batterie
  • 2 Sicherheitsnadeln
  • Isolierband
  • 1 oder 2 starke Magnete

 

So wird's gemacht:

 

  • Wickle den Draht 3-4 Mal um die Batterie. Achte dabei darauf, genügend Draht zum Umwickeln der Drahtspule übrig zu haben.
  • Umwickle die Spule mit den beiden Enden des Kupferdrahtes, damit alles gut zusammen hält.
  • Entferne den Lack jeweils einseitig von den beiden Enden des Kupferdrahtes mit Schmirgelpapier.

 

  • Befestige die Köpfe der Sicherheitsnadeln mit Isolierband an beiden Seiten der Batterie. Achte dabei darauf, dass der Kopf der Nadel guten Kontakt zur Batterie hat.
  • Befestige die Batterie mit Klebeband am Tisch.
  • Platziere die Magnete auf der Batterie.
  • Befestige die Drahtspule in den Ösen der Sicherheitsnadeln und beobachte, was passiert. Fertig ist dein Motor!

 

 

Hilfe, es funktioniert nicht!

  • Eventuell musst du den Magneten umdrehen oder die Drehrichtung der Spule im Magnetfeld ändern.
  • Überprüfe, ob die Lackschicht wirklich genügend entfernt wurde und die eine Hälfte des Drahtes immer noch isoliert ist
  • Stelle sicher, dass die Köpfe der Sicherheitsnadeln guten Kontakt zur Batterie haben.
  • Versuche es mit einer neuen Batterie.

 

Tipps: (1) Achtung: Der Draht wird nach einiger Zeit warm! (2) Probiere aus, was passiert, wenn noch ein zusätzlicher Magnet über die Spule gehalten wird.

 


Was steckt dahinter?

Der elektrische Strom fliesst durch die Kupferdrahtspule und die Sicherheitsnadeln von einem Pol der Batterie zum anderen. Gleichzeitig erzeugen die Magnete ein Magnetfeld um die ganze Anordnung herum. In diesem Magnetfeld werden die im Draht fliessenden Ladungsträger abgelenkt und möchten von ihrer Bahn abweichen (man nennt dies die Lorentzkraft). Weil die Ladungsträger den Draht aber nicht verlassen können, beginnt sich die gesamte Spule unter dem Einfluss der Kraft zu drehen.

 

 

Unter dem Einfluss der Lorentzkraft kippt der obere Teil der Spule in der Grafik nach vorne, bis die Spule waagrecht liegt. Würde der Strom kontinuierlich weiterfliessen, käme die Spule jetzt zum Stillstand und würde sich dann in die entgegengesetzte Richtung bewegen, es käme also zu einer Pendelbewegung (das sieht man vor sich, wenn man sich die Spule in der Grafik um 180° gedreht vorstellt: Der Stromfluss zeigt dann in der oberen Bildhälfte nach rechts und in der unteren nach links, was dazu führt, dass sich auch die Richtung der Lorentzkraft umkehrt).

 

Damit sich die Spule kontinuierlich dreht, muss der Stromfluss jeweils während der Hälfte der Umdrehung unterbrochen werden; in dieser Zeit rotiert die Spule allein durch ihren Schwung. Erst nach einer halben Umdrehung wird sie wieder unter Strom gesetzt und durch die Lorentzkraft erneut in Bewegung gebracht. Dies erreichen wir im Experiment, indem wir nur die Hälfte des Drahtendes, das den Kontakt zur Stromquelle herstellt, abgeschmirgelt haben. Die andere Hälfte bleibt lackiert und unterbricht den Stromfluss in regelmässigen Abständen. 

 

Text und Bilder: Redaktion simplyscience.ch. Die Wissenschafts-Olympiade und SimplyScience publizieren in loser Folge gegenseitig Inhalte voneinander. 

 

Weitere Experimente:

Further articles

Association

Linguistics

Philosophy

Robotics

Physics

Biology

Chemistry

Informatics

Mathematics

Sprichwortsalat

Von Lissabon bis Yerevan, von der Isle of Man bis Dortmund: Die internationalen Wissenschafts-Olympiaden finden dieses Jahr an den verschiedensten Orten statt. In diesem Rätsel sind die Sprichwörter einiger Gastgeberländer ziemlich durcheinander gekommen.

Association

Tipp: Hightech-Geräte ausleihen und Wissenschaft erlebbar machen

Man versteht nur, was man tut, und Worte ohne Erfahrung sind bedeutungslos. Diese beiden Zitate beschreiben das Berzelius-Projekt in wenigen Worten: Es geht ums Experimentieren. Und das mit ausleihbaren Hightech-Geräten für Maturaarbeiten und mehr.

Association

Economics

Die unsichtbare Hand: drei Übungen zur Selbstregulation des Marktes

Nicht der Staat soll den Markt lenken, sondern «die unsichtbare Hand»: Der Markt schafft das ganz von selbst. Doch wo sind die Grenzen dieses ökonomischen Prinzips? Thomas Schneiter von der Wirtschafts-Olympiade erklärt es mithilfe von drei Übungen.

Philosophy

Die Siegeressays

Noah Rosenbaum und Philipp Altmann haben mit ihren Essays die Philosophie-Olympiade gewonnen. Neugierig auf die Argumente? Hier kannst du die Texte selber lesen!

[Translate to English:] Eine Blüte der Spiegel-Ragwurz täuscht vor, ein Weibchen zu sein

Association

Biology

Philosophy

Chemistry

Linguistics

Let’s talk: Wie Pflanzen sprechen

Pflanzen haben weder Mund noch Ohren. Trotzdem haben sie eine Vielfalt an faszinierenden Methoden entwickelt, um sich mit anderen Lebewesen auszutauschen. Sie kommunizieren mit optischen und chemischen Signalen oder mithilfe von Pilzen.

[Translate to English:] Wissenschafts-Olympiade Weltraum Platte

Association

Philosophy

Biology

Chemistry

Geography

Mathematics

Physics

Linguistics

Economics

Let's Talk: Mit lieben Grüssen von der Erde

Wenn du Grüsse ins All schicken könntest, wie sähen diese aus? In den 1970er Jahren hat man sich für eine Platte mit Zeichnungen nackter Menschen, Walgeräuschen und Rockmusik entschieden.