Challenge 5, Optics: Solution

All kinds of optics

Parts A, B and C are independent of each other and can therefore be solved individually.

Part A. Astronaut

15 pt.
\qquad
3 pt.

3 pt.

1 pt.
1 pt.

1 pt.

5 pt.
\square

3 pt.

1 pt.
0.5 pt.
0.5 pt .

1 pt.

2 pt.
1 pt.

The minimal thickness is therefore $l_{\text {min }}=\frac{\lambda}{2 n}=199 \mathrm{~nm}$.
Part C. Newton's rings

7 pt.

In 1717, Sir Isaac Newton studied an interesting phenomenon: If you approach a spherical surface to a reflecting plane surface, you observe a series of concentric rings (see figure) when you look through the glass from above. In our case, the light source is monochromatic and has a wavelength λ.

Figure 1:

Figure 2:
i. Explain why you see rings, what the conditions are for bright rings and what the conditions are for dark rings.

There is an interference between the light which is reflected at the bottom surface of the curved lens and the one which has an additional travel of two times h, the height between the curved lens and the flat surface.

The light going to the reflective surface picks up an additional half wavelength phase shift.

Therefore the condition for constructive interference reads

$$
\frac{2 h}{\lambda}=n+\frac{1}{2}=n+\frac{1}{2}
$$

where n is an integer. For constructive interference we see a bright ring.
Therefore the condition for constructive interference reads

$$
\frac{2 h}{\lambda}=n^{\prime}+\frac{1}{2}+\frac{1}{2}=n
$$

where n^{\prime} and n are integers. For destructive interference we see a dark ring.
Having been delighted by the beauty of the rings that bear his name, Sir Isaac Newton might have wondered at what distance d the lens is from the plane surface.
ii. Express d as a function of the radius R of the curved glass surface, the radius r_{n} of the $n^{\text {th }}$ dark ring and the wavelength λ.

We have

$$
h_{n}=d+\left(R-\sqrt{R^{2}-r_{n}^{2}}\right)
$$

With the assumption that we only look at rings close to the center $r_{n} \ll R$ we get

$$
h_{n}=d+R\left(1-\sqrt{1-\frac{s^{2}}{R^{2}}}\right) \approx d+\frac{s^{2}}{R^{2}}
$$

With the condition for destructive interference we get

$$
d=\frac{\lambda}{2} n-\frac{r_{n}^{2}}{2 R}
$$

