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Chapter 1

SOLVING STRATEGIES
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1.1 Get an Overview and Elaborate a Strategy . . . . . . . . . . . . . 2

1.2 Get the Key Aspects of the Problem . . . . . . . . . . . . . . . . . 2

1.3 Write Clearly and Keep the Overview . . . . . . . . . . . . . . . . 3

1.4 Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Symmetries and Order of Magnitude . . . . . . . . . . . . . . . . . 6

1.6 Introduce new variables . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Check Your Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Other Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.10 Calculated example . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



1 Solving Strategies

The tests of the Physics Olympiad are rather tricky and sometimes beyond the scope of

physics at school. Often it is important to have a good idea or to approach the problem

from a good starting point. The hints and tricks presented in this chapter should help

you to approach a problem and to solve it efficiently.

1.1 Get an Overview and Elaborate a Strategy

The time and the problems are chosen such that it is almost impossible to solve all the

problems correctly within the given time. This might sound cruel but you have to see it

from a positive side. Take the different topics as choice and focus on those you can solve

best, nobody expects you to solve everything correctly (the goal is not to get all points

but get more than the others). Hence a good time management is crucial, do not become

desperate if you get stuck in a problem, maybe also most of the other competitors will

get stuck and there might be another problem that you can solve. Summarizing the most

important points we have:

• Read through the whole exam and try to solve the easy tasks first (they are some-

times hidden after a more difficult task, so read the whole problem).

• Focus on problems and topics you like more or you think you have a better chance

to solve them correctly. Use your time wisely.

• Fight for every small point: Also an unsuccessful trial might give some points,

writing nothing certainly gives no points.

• Do not become desperate, the test is hard for everyone, focus on fighting for

points.

1.2 Get the Key Aspects of the Problem

Before you really can start, you have to understand what is searched and what quantities

are given. Sometimes the problem looks hard at first sight, but having a second look it

gets much easier. But also the opposite is possible... Some tricks to improve the overview

are:

• Read the problem twice, maybe you forgot an important detail when reading it first

and you get it the second time.

• Read also the subsequent tasks, maybe they give you a clue what to do.
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1.3. WRITE CLEARLY AND KEEP THE OVERVIEW

• Make a drawing of the situation (see also next section).

• If there are a lot of variables involved and you lost the overview, make a list with

these variables (and label them in the drawing). Also write down (obvious) relations

between the variables. This might already give some points.

• For each task the number of points you can gain for that task is indicated. This is

a hint how difficult or how easy a task is.

1.3 Write Clearly and Keep the Overview

Not only those who correct will be pleased about a nice writing and a good overview.

It is also very useful for you to keep the overview and thus minimize calculation errors.

Some hints (see also the examples in the next chapters):

• Leave enough space in all directions and in particular between different problems

/ parts / questions. This will improve the overview and in case you have to add

something, there is still space left.

• Explain what you are doing (also in words) and make nice drawings (see also next

section).

• If you can name the variables by yourself, give them intuitive names. For example

Greek letters for angles, the variables you are used to for energy, momentum and

so on.

• Clearly write down your assumptions and simplifications.

• If you do a longer computation do not make a long row of equal signs. Instead

write on the right hand side of the equation below each other. For example:

ax2 + bx+ c = a(x2 +
b

a
x) + c

= a(x2 +
b

a
x+

b2

4a2
) + c− b2

4a

= a(x+
b

2a
)2 + c− b2

4a2
.
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1 Solving Strategies

1.4 Drawings

Sometimes you are asked to do a drawing or you want to do a drawing to get a better

overview. Independent of the purpose of the drawing there are some points that should

be considered:

• Make a BIG drawing. And by big we mean: really use the space on the page

(drawings smaller than a third of the page are in most cases too small).

• If possible, use ruler and compass for the drawing and try do draw it as precisely

as possible (without wasting time on the drawing). Sometimes a problem can be

solved geometrically, that is why a precise drawing might be useful.

• Use different colors to distinguish different properties.

• Label the quantities in the drawing that are given or asked or that might be helpful

(see next section).

Second round 2020, part of the first question:

Consider the following schematic of a mirror telescope setup, using an ocular lens.

The sketch is not to scale.

D

dR

lR

lO

The telescope has a total length of L = 2m, and the diameter of the opening

and the parabolic mirror is D = 50 cm. In the interior of the telescope, there

is a planar secondary mirror with diameter dR = 9 cm. The secondary mirror is

placed lR = 1.8m from the parabolic mirror, and tilted by 45°. The ocular lens has

diameter dO = 1 cm and is placed at an adjustable distance lO outside the housing,

in such a way that a sharp image forms. The focal length of the parabolic mirror is

fP = 2.1m, and the focal length of the ocular lens is fO = 3 cm.
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1.4. DRAWINGS

Question 1: Sketch the trajectory of light from a very distant star through the tele-

scope.

Solving Strategy: Wemake a big drawing and try to draw the situation to scale 1 : 10
(at least as much as possible, see also Note below). Since the star is very far away

we can assume the rays are parallel when entering the telescope. When the rays hit

the mirror, they get focused towards the focal point and would intersect there. The

small planar mirror deflects the rays. Therefore the rays intersect at the mirrored

focal point, so we ”reflect” the focal point. If we want to have a sharp image, the

rays should be parallel after the ocular. To have them parallel, all of them must pass

through the focal point of the ocular (note, the diameter and the distance from the

ocular are not drawn to scale)

Solution 1:

Figure 1.1

Note: We did a big and nice drawing1 which will be useful in the next two tasks!

Furthermore: Is important to read the task exactly and maybe also mention things

in the drawing that might be obvious but might get forgotten (there were students

who mistook the mirror telescope with a lens and drew the rays through the mirror).

Question 2: At which distance lO does the ocular lens need to be placed so that the
rays from a very distant star are parallel after the ocular lens?

Solving Strategy: To have a parallel ray after the lens, the rays must pass through

the focal point. If we put the lens such that its focal point is at the position where

wall rays meet (=mirrored focal point of mirror), we fulfil this condition. From the

drawing we see that the focal point of the lens and of the mirror must coincide.
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1 Solving Strategies

Solution 2: fP+fO = lR+
1
2D+lO which leads to lO = fP+fO−lR−1

2D = 8 cm.

Note: Since we drew the whole situation very carefully, it is easier to see this solution

and if we draw it to scale, we even can check the numeric solution (not possible here

as it was not possible to draw the ocular at the right position).

Question 3: Determine the magnification of the telescope.

Solving Strategy: From a geometrical point of view we can use the intercept theo-

rem: the ratio between the distance parabolic mirror - focal point and the distance

ocular - focal point is equal to the ratio of the corresponding diameter of the rays.

Solution 3: M = fP
fO

= 70 using interception theorem.
Note: Again, a good drawing helps a lot.

The first problem continues and the drawing itself is not that useful anymore. Nev-

ertheless with this solutions we got 4.25 points out of 162.

1.5 Symmetries and Order of Magnitude

The physics taught you in this script is formulated quite generally and the formulas might

look more complicated than they are. In a specific problem, there might be symmetries

involved that massively simplify the problem (in particular in electrodynamics). Further-

more the problem might contain different quantities that have a completely different or-

ders of magnitude. This might allow you to simplify the problem (e.g. in most problems

the earth can be considered being flat).The most important hints in this topic are:

• What is the proper dimensionality of the problem? Often it is not necessary to treat

the problem in 3 dimensions. For example the motion of a planet or the ballistic

treatment of a football can be done in two dimensions as they move in a plane.

• Use rotational or mirror symmetries.

• If in the problem two quantities are explicitly related via a� or a�, you should

always simplify your computations. The difficulty is then to figure out how much

1The page layout does not allow to plot the drawing in its right scale. The squares originally have a size

of 5 mm.
2The average of the points at this whole problem 1 (including the tasks that are not listed here) at the

second round 2020 was ≈ 1.8.
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1.6. INTRODUCE NEW VARIABLES

the problem can be simplified without neglecting the effect under investigation, i.e.

whether it is allowed to set one value completely to zero or a more sophisticated

simplification is needed such as a Taylor expansion. For example considering a

pendulum, the displacement s shall be much smaller than the length of the pendu-
lum l (s � l). But setting s = 0 would not allow us to investigate the oscillation,
hence we need the first order approximation s/l = sin(φ) ≈ φ where φ is the
displacement angle.

1.6 Introduce new variables

In some cases it is very useful to introduce a new variable (or multiple) that is not given

by the problem. It might be easier to split the problem in smaller steps and find relations

between given quantities and introduced ones instead of only using the given variables.

In most cases, these newly introduced variable is just helping you to find useful equations

and to simplify the physics. In the end it is often possible to get rid of the introduced

variable by having enough equations to eliminate it (see also example below). Some tricks

are:

• Say clearly how you define your new variable. If the definition is not clear you

might mix up different quantities.

• Introduce only variables you know how to deal with. Think a bit if the new variable

really describes something useful and meaningful.

• Do not introduce variables that are very obviously related to other variables (e.g.

radius and diameter of a circle). Otherwise you risk to loose the overview over all

the variables.

• Keep track of your variables and name them in an intuitive way, i.e. Greek letters

for angles (see also section 1.3)

• If you have a drawing, also label this new variable.
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1 Solving Strategies

Example:

Problem: A coin with diameter d = 2 cm lies on the floor of a white tea cup which

has an inner diameter b = 6 cm and height l = 8 cm. The coin lies in the middle of

the cup. From which angle is it possible to see the whole upper surface of the coin

if the cup is filled with water up to a height h? Write down a relation between the
given quantities (no need to solve it).

Solving strategy: First we think about the symmetry of the problem. Assuming to

have a round cup, it does not mutter fromwhich side we look at it. We therefore have

a rotation symmetric problem and we simply chose one vertical plain going though

the middle of the cup. We therefore reduced the 3 dimensional problem to 2, which

will simplify our calculations and drawings.We draw the situation (see figure 1.2) and

try to understand what limits the visibility of the coin. Looking at the coin from the

top we obviously can see the coin. When turning to the side there is an angle where

the light of the edge of the coin just touches the rim of the cup (corresponding angle

drawn as β). We therefore have to find this β. The difficulty is that the light gets
refracted at the water-air surface and it is not clear where on the surface this happens.

So we introduce the distance x between that point and the side of the cup. We now
try to find enough equations to eliminate x. In the drawing, we have four given
variables (b, d, h, l) and three unknown variables (α, β and x). We have to find three
(independent) equations relating all these variables.

x

α

β

h
l

b

d

Figure 1.2: Drawing of the situation.
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1.7. CHECK YOUR RESULT

Solution: We can apply Snell’s law:

sin(α)nw = sin(β) (1.1)

where nw is the refractive index from water (known).

Second we compute the horizontal path length from the edge of the coin to the rim

of the cup

b− d

2
= tan(α)h+ x. (1.2)

Third we have

tan(β) =
x

l − h
. (1.3)

Having these three equations we can eliminate all unknown variables: Solve equation

1.3 for x and insert it in 1.2. Furthermore solve equation 1.1 for α and also insert it
into equation 1.2. We then get

b− d

2
= tan

(
arcsin(

sin(β)

nw
)

)
h+ (l − h) tan(β) (1.4)

This equation defines β. As we are not asked to solve it, we are done.

Note: Of course we could have solved the problem without introducing x but some-
times it is very helpful to introduce a variable to split the problem into smaller steps

which can be solved easier.

1.7 Check Your Result

If you got a result there are some sanity checks you should do to avoid avoidable mistakes

such as forgetting a square or using the wrong units:

• Analysis of dimension: Does the result have the correct dimension? Sometimes it

is even possible to guess a formula just by looking at the dimension of the given

quantities.

• Is the argument of certain functions without dimension? This point concerns in

particular the trigonometric functions and the exponential and logarithm. For ex-

9



1 Solving Strategies

ample in sin(x), xmust be without dimension. So x = ωt where t is time and ω a
(angular) frequency is fine, but x = tmakes no sense (what is the sine of a time?!).

• If specific numerical values are given, the result should bemeaningful. For example

the speed of a car is in the order of 10m·s−1 and certainly not 1000m·s−1 or
0.01m·s−1.

• Back of the envelope calculation when doing calculations with the calculator

1.8 Calculator

At our exams, you are only allowed to use a simple calculator without any algebraic solving

system or graphic display. With some tricks such a calculator is enough to solve the

problems1.

• If numerical values are given, insert them at the very end of your calculation. It is

easier to calculate with variables than with numbers and youwill make less mistakes.

• If you split your computations in different steps, save your steps and continue with

the saved values. This way you avoid to make rounding errors.

• When inserting the numbers in your formula, it is easier to write them in scientific

notation, i.e. c = 3 · 108 instead of c = 300000000. Doing this, you can even
go one step further and simplify all the 10x exponentials in your formula before
typing it into the calculator.

• Get used to your calculator: You should know how your calculator works and

where the different operations are located. Some calculators (which are allowed at

our exams) have even some more functions such as computing the mean or the

standard deviation. Knowing these functions might be very helpful.

1.9 Other Hints

There are some other hints that might help:

• Even when specific values are given (e.g. velocity v = 3m·s−1), only plug them in

at the end, as you normally will get points for the final formula

1When studying Math or Physics, in most exams you are not allowed to use any calculator or only a

simple one. So it is a very good exercise to get used to solve mathematical or physical problems without

calculator or with a simple one.
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1.10. CALCULATED EXAMPLE

• If you have no clue, look at the dimensions of the given variables. Maybe you can

guess the answer. This is also very useful when you are not sure at which power

you have to take the quantities or if you forgot the formula

• Usually the tasks are such that the solution only needs given quantities (maybe not

given as numerical values but as variables) or natural constants. Nevertheless there

are sometimes questions where you have to make an assumption. Examples are

the diameter of an eye (in optics) or the mass of an object.

• Take your time to read the problem and get some understanding of the systems

and definitions. Start solving the first exercise once you have done this.

1.10 Calculated example

In this section we have a look at an entire former second round problem (second round

2020, problem 3).

Intro:

Let’s consider a helical ramp. The helix’s axis is vertical, its radius R (the horizontal

distance from each point of the ramp to the axis) is constant. The ramp’s slope is also

constant and such that the vertical distance between two coils (distance which is called

the helix’s ”pitch”) is s.

R

s~g

We study the motion of a marble of massm that rolls on the ramp. The marble’s position

l(t) on the helix is described by the distance it travelled along the ramp from its initial

position.
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1 Solving Strategies

Part A: A point object on a line

First, let’s consider that the ramp is analog to a line along which the marble moves with-

out friction and without leaving the ramp.

Task A i) (1P): What is the length L of one helix’s turn, that is, the distance the marble
travelled when it crosses the vertical of its initial position for the first time after being let

go along the ramp?

Solving Strategy: Before hurrying with the answer, we first make some general thoughts

about the problem:

• Read the whole problem or at least part A. There might be some hints hidden in

the following tasks.

• Think about the dimensionality of the problem and how to describe the motion

efficiently (reading the whole part A first might help answer this question. The

motion itself is confined on the helix. The helix itself is a line, so one dimension is

sufficient to describe the motion (in Task A iv) - vi) this will be relevant). Never-

theless the helix itself is embedded in three dimensions, so when talking about the

helix itself, we maybe have to do the computation in 3D.

As this question deals with the helix, we have to consider more than one dimension. But

we can simplify the computation if we unroll the helix2. We then see that one winding

corresponds to a triangle, the hypotenuse of a right triangle. One cathetus of this triangle

is the circumference 2πR the other is the pitch s.
Solution: Unrolling the helix and applying Pythagoras leads to

L =
√
(2πR)2 + s2.

Note: No hurry at the beginning, we will see that the general considerations will not be

done in vain.

Task A ii) (1P): What is the angle α between the ramp and the horizontal plane?
Solving Strategy: We are dealing with the helix again and we can reuse the picture gained

in the first task.

Solution:

α = arctan
( s

2πR

)
.

2To unroll the helix, imagine a piece of paper rolled into a cylinder. Draw the helix onto the paper and

unroll it. The helix becomes a set of parallel, slanted lines.
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1.10. CALCULATED EXAMPLE

Note: Understanding the first task well and making a drawing (at least in the head by

unrolling the helix) helped solving this one.

Task A iii) (1P): Draw the applied forces acting on the marble in the referential of your

choice.

Solving Strategy: As we need three dimensions to draw the helix, we need also all three

dimensions to draw the forces. Since a three dimensional drawing is difficult, we draw

the situation once from the side and once from the front view (also a good 3D drawing

is possible).

Solution: There is the gravitational force FG, the centripetal force FZ and the normal

force FN . The vertical line in the drawing corresponds to the axis around which the helix

winds.

side view

R

FN

FG

FN

front view

FZ

−FG

FG

Figure 1.3

Note: In this task different drawings are possible but it must clear from which perspec-

tive they are drawn.

Task A iv) (1.5P): Compute the marble’s acceleration a(t) tangent to the ramp as a
function of time.

Solving Strategy: We use Newton’s second law: The sum of all forces must be equal to

the acceleration times the mass. As we only have to consider the tangent acceleration, we

only have to consider the forces drawn in the side view picture. The normal force and the

gravitational force compensate each other in the direction perpendicular to the direction

of motion. The resulting force is therefore the force pointing parallel to the ramp.

13



1 Solving Strategies

Solution: The tangent force is constant and since there is no friction we get

a = g sin(α) =
gs

L
.

Note: Understanding the geometry of the problem is again very useful.

Task A v) (0.5P): We let the marble roll along the ramp with an initial velocity v0 (tangent
to the ramp). Compute the marble’s position l(t) as a function of time.

Solving Strategy: As the acceleration is constant, we deal with the usual formula for

constant acceleration.

Solution:

l(t) = v0t+
1

2
at2

Note: This question might look difficult at first sight, but looking at the number of points

we realize there must be a simple solution.

Task A vi) (2P): If the initial velocity’s direction is upward the ramp, after what time

τ will the marble cross its initial position again? Find a numerical value for τ using
R = s = 20 cm and v0 = 1m·s−1.
Solving Strategy: Being at the same position again means l(τ) = 0. Inserting in the
equation above and solve it for t leads to the correct result.

Solution: We want l(τ) = 0. There are two solutions, at t = 0 the marble starts rolling
up, hence we want the non-zero solution:

0 = v0 +
1

2
aτ

τ =
2v0
a

=
2v0
gs

√
(2πR)2 + s2

=
2v0
g

√(
2π

R

s

)2

+ 1.

Therefore τ ≈ 1.3 s.

Note: The numerical values are inserted at the very end.
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1.10. CALCULATED EXAMPLE

Part B: Like a slide

We consider now that the ramp’s cross-section is a half-circle of radius r, the two rims
being at same height. Themarble is still considered a point object with frictionlessmotion.

The position of the marble inside the ramp is determined by the angle φ(t) (taken in the
vertical plane containing the helix’s axis) and the distance l(t) from its initial position,

measured along the bottom of the half-pipe (where φ = 0).

R

rφ

Task B i) (5P): Find an equation that links the variables φ(t), R, r, s, l(t) and L if the
marble’s initial conditions are v0 = 0 and φ0 = 0. No other variable than these six ones
should appear in this equation. You are not asked to solve this equation.

Solving Strategy: Ok, this is a hard task, also as it gives 5 points! But there is no reason

to be in despair, let’s solve it step by step.

1. Understand the geometry of the problem: In part A, the helix consisted of an

infinite thin line, that’s why we could treat the movement of the marble in one

dimension. In this part B, the line is replaced by a half pipe. This half pipe is then

wound up as helix. The difficulty is, that the motion of the marble is not confined

to one dimension anymore. Instead the marble can also move on the semi-circle

given by the half pipe and which is parametrized by ϕ.

2. After understanding the geometry, we start to think about themotion in an intuitive

way. Along the helix, the marble will always get faster (as it goes down). But the

faster motion asks for a bigger centripetal force, hence the marble will be pushed

out, meaning ϕ gets bigger (intuitively (but wrongly) spoken: the centrifugal force
gets bigger and pushes the marble out).

3. Think about how to simplify the computation3 The speed along the helix will al-

ways be much bigger than the motion in the semi-circle. Therefore we neglect the

velocity along the semi-circle.

3If you did not consider themotion along the semi-sphere, don’t worry, you have a good physical intuition

about relevant aspects.
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4. Now we start collecting equations: First we apply Newton’s laws in vertical and

horizontal direction:

N cos(φ)−mg⊥ = 0

N sin(φ) = mac = m
v2

R+ r sin(φ)
.

The first line basically tells you that the component of the gravitational force g⊥
is compensated by the normal force N . The second line includes the centripetal
force ac: The horizontal component of the normal force acts as centripetal force
forcing the marble on the curved path of the helix. Since the result should not

include g⊥ and the velocity v, we have to find more equations equating them with

other given quantities.

As the velocity along the circle is negligible, there must be no force pointing tangent

to the circle. This means, the normal force points towards the center of the circle,

see the following figure

~Nφ

As the vertical component of ~N ismg⊥, we get another equation

v2

(R+ r sin(φ))
= g⊥ tan(φ).

In addition we somehow have to connect the velocity with the position along the

path. This is easiest done with energy conservation equating the potential and the

kinetic energy:

1

2
mv2 = mg⊥

(
s
l

L
− r (1− cos(φ))

)
.

With these equations it should be possible to eliminate all introduced variables and

to solve the problem.

16



1.10. CALCULATED EXAMPLE

Solution: The forces are

N cos(φ)−mg⊥ = 0

N sin(φ) = mac = m
v2

R+ r sin(φ)
.

Furthermore the force must act perpendicular to to the circle:

v2

(R+ r sin(φ))
= g⊥ tan(φ) ⇒ mv2 = mg⊥ tan(φ) (R+ r sin(φ))

And according to energy conservation:

1

2
mv2 = mg⊥

(
s
l

L
− r (1− cos(φ))

)
⇒ mv2 = 2mg⊥

(
s
l

L
− r (1− cos(φ))

)
Merging the last two equations, we get

tan(φ) (R+ r sin(φ)) = 2

(
s
l

L
− r (1− cos(φ))

)
.

Note: With the last equation, we are done as it relates the given quantities. This was a

really though task, nobody will be able to solve this within some minutes. So do not des-

perate if you don’t see the solution immediately but try to do the steps explained above.

Furthermore we did not use the first two equations, but they are good to understand the

problem and where the forces come from.

Task B ii) (1P): Will the marble jump off the ramp?

Solving Strategy / Solution: As vertical component of the normal force is always point-

ing in the same direction as the gravitational force, the normal force has always a non-zero

vertical component. Hence the normal force will never be perfectly horizontal and there-

fore the angle always smaller than 90◦. Therefore the ball will never jump off the ramp4.

Note: Once again it helped understanding the previous problem and the unused equa-

tions about the forces become useful. In addition this task was solvable even without

completely solving the previous one. So always look at all tasks and do not stop solving

if you cannot solve one.

4Here the assumption enters, that there is no motion in the semi circle and therefore no oscillation or

other wired motion which (hypothetically) could cause the ball to jump off the ramp.
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1 Solving Strategies

Task B iii) (2P): How is the equation simplified if we assume R � r?
Solving Strategy: We divide the solution of Task B i) by R and use 1 � r/R meaning

we discard all terms where r/R is added to a constant.

Solution:

tan(φ)
(
1 +

r

R
sin(φ)

)
=

2sl

LR
− 2

r

R
(1− cos(φ))

tan(φ) ≈ 2sl

LR

using sin(φ) and cos(φ) are finite.
Note: A wrong result in Task B i) might also lead to a wrong result in this task. So if you

get some very unrealistic result here, you might already have done a mistake in B i). But

you might still get partial points for this task so certainly write something down.

Task B iv) (1P): Provide the numerical value of φ(t) when the marble completed 5 turns
(with R = 10m, r = 2 cm and s = 2m).

Solving Strategy: The marble performing 5 turns means l/L = 5. Inserting all these
values, we get the numerical result. Furthermore R � r, therefore we can use the
simplified formula.

Solution: We use the simplified formula, then φ ≈ 1.1 rad (= 63◦)
Note: Do not insert numerical values earlier, only at the very end.
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2 Mathematics

This part of the script presents the most important mathematical tools. Some things will

be known from school, other things maybe will be new. The goal is not to present the

entire high school mathematics, but to give an overview over the concepts, which are

needed in the physics part. The proofs are not really important for the physics, so one

can omit them if not interested.

2.1 Vector algebra

In physics, vectors are of crucial importance, since many physical quantities are repre-

sented by vectors. The foundation of vector algebra should be known from school.

Therefore we will only repeat the two most important concepts for physics. The main

reference for this chapter is [1].

2.1.1 Scalar product

There is an intuitive way to add two vectors and to multiply a vector by a number. There

are essentially two ways how two vectors can be multiplied. One of them is the scalar

product (also known as dot product).

Definition: Let ~a and~b be vectors. Then the scalar product of ~a and~b is

~a ·~b =

ax
ay
az

 ·

bx
by
bz

 = axbx + ayby + azbz.

There is a nice connection between the scalar product and the angle ϕ between the vec-
tors ~a and ~b (see figure 2.1). We have the following alternative expression for the scalar
product:

~a ·~b = axbx + ayby + azbz = |~a| · |~b| · cos(ϕ).
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2.1. VECTOR ALGEBRA

Figure 2.1: ~c = ~a−~b

Proof: The equality axbx + ayby + azbz = |~a| · |~b| · cos(ϕ) follows from the cosine formula1.

We look at figure 2.1 and calculate the length of ~c = ~a−~b in two ways. On one hand, we have:

|~c|2 = |~a−~b|2 = (ax − bx)
2 + (ay − by)

2 + (az − bz)
2

= a2x + a2y + a2z + b2x + b2y + b2z − 2axbx − 2ayby − 2azbz

= |~a|2 + |~b|2 − 2 (axbx + ayby + azbz) .

On the other hand, it follows by the cosine formula, that:

|~c|2 = |~a|2 + |~b|2 − 2 · |~a| · |~b| · cos(ϕ).

Comparing the two expressions for |~c|2, we find

axbx + ayby + azbz = |~a| · |~b| · cos(ϕ).

�

1The cosine formula tells us, that in a triangle with sidelengths a, b and c we have

c2 = a2 + b2 − 2ab cos(ϕ),

where ϕ is the angle between a and b.
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Remarks

• The scalar product is often used to calculate the angle ϕ between two vectors ~a
and~b. Using the two different expressions for the scalar product, we get

cos(ϕ) =
~a ·~b
|~a| · |~b|

=
axbx + ayby + azbz

|~a| · |~b|
.

• The scalar product has an intuitive interpretation: One first projects the vector ~a
on the vector~b to get a vector ~a′ of length

|~a′| = |~a| · cos(ϕ)

(see fig. 2.2). Then the scalar product of ~a and~b is the product

|~a| · cos(ϕ) · |~b| = |~a′| · |~b|

of the length of ~a′ with the length of~b. This means that only the part of ~a which is
parallel to~b contributes to the scalar product. The same holds, if one interchanges
~a and~b.

Properties: We summarize the most important rules for calculations involving the

scalar product. Let ~a,~b, ~c be three vectors and s a real number. Then we have:

~a · ~a = |~a|2 = a2x + a2y + a2z

~a ·~b = ~b · ~a

(s~a) ·~b = s ·
(
~a ·~b

)
~a ·
(
~b+ ~c

)
= ~a ·~b+ ~a · ~c.

Furthermore: If ~a,~b 6= ~0, then ~a ·~b = 0 if and only if ~a and~b are orthogonal.

Exercise: Does (~a ·~b) · ~c = ~a · (~b · ~c) hold?
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2.1. VECTOR ALGEBRA

Figure 2.2: Projection of ~a on~b

2.1.2 Vector product

The scalar product of two vectors is a number (scalar). The vector product (also known

as cross product) of two vectors is a vector, concretely:

Definition: Let ~a and~b be vectors. The vector product of ~a and~b is defined
as

~a×~b =

ax
ay
az

×

bx
by
bz

 =

aybz − azby
azbx − axbz
axby − aybx



Properties

1. The vector product ~a×~b is orthogonal to both ~a and~b, given that ~a and
~b aren’t parallel (see. fig. 2.3). If ~a and~b are parallel then ~a×~b = ~0.

2. The vectors ~a,~b and ~a×~b follow the right hand rule (see. fig. 2.1).
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Figure 2.3: Vector product

3. If ϕ is the angle between ~a and ~b, we have |~a ×~b| = |~a| · |~b| · sin(ϕ).
Therefore the absolute value of the vector product is equal to the area of

the parallelogram with sides ~a and ~b (see fig. 2.3). This means that only
the part of ~a, which is orthogonal to~b contributes to ~a×~b.

Proof:

~a×~b

~a

~b

Figure 2.4: Right hand rule.
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2.1. VECTOR ALGEBRA

1. One calculates ~a ·
(
~a×~b

)
= 0 and ~b ·

(
~a×~b

)
= 0. So it follows, that ~a and ~b are

orthogonal to ~a×~b.

2. This is not really an obvious fact. The idea is to first show the fact for ~a and ~b in the
xy-plane and then one reduces the general case to this.

3. One has sin2(ϕ) = 1− cos2(ϕ). Therefore:(
|~a| · |~b| · sin(ϕ)

)2
= |~a|2 · |~b|2 ·

(
1− cos2(ϕ)

)
= |~a|2 · |~b|2 −

(
|~a| · |~b| · cos(ϕ)

)2
= |~a|2 · |~b|2 −

(
~a ·~b

)2
.

On the other hand, one can calculate explicitly, that |~a|2 · |~b|2 −
(
~a ·~b

)2
= |~a × ~b|2.

Therefore one gets |~a×~b| = |~a| · |~b| · sin(ϕ).

�

More properties: We summarize the most important rules for calculations involving

the vector product. Let ~a,~b, ~c be three vectors and s a real number. Then we have:

~a× ~a = 0

~a×~b = −
(
~b× ~a

)
(s~a)×~b = ~a×

(
s~b
)
= s ·

(
~a×~b

)
~a×

(
~b+ ~c

)
= ~a×~b+ ~a× ~c(

~a+~b
)
× ~c = ~a× ~c+~b× ~c

Exercise: Does (~a×~b)× ~c = ~a× (~b× ~c) hold?
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2.2 Differential calculus

Physics without calculus is impossible, since most physical laws in their general formula-

tion use derivatives or integrals. In this chapter, we look at differential calculus. The next

chapter will treat integral calculus. The main reference for this chapter is [2].

2.2.1 Derivative of a function

Given a real function f , which maps a real number to another real number, we are often
interested in the slope of the graph of f at some point x0. With the slope of f , we mean
the slope of the tangent at the graph of f through f(x0) (see fig. 2.5). How can we
calculate this slope? For this we first think about how to calculate the slope of the secant

through f(x0) and f(x0 + h) for some h > 0 (see. fig. 2.5): This slope is simply the
difference in height divided by the difference in lenght, hence

f(x0 + h)− f(x0)

(x0 + h)− x0
=

f(x0 + h)− f(x0)

h
.

If we make h smaller, the secant approaches the tangent and the slope of the secant
approaches the slope of the tangent. Therefore the slope of the tangent is the limit of the

slope of the secant, when h goes to 0, written as limh→0. We call the slope of the tangent

of f at the point x0 the derivative f
′(x0) of f at the point x0.

Definition: Let f be a real function and x0 a real number. Then we define
the derivative of f at the point x0 as

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (2.1)

Remarks

• One often also writes
df
dx (x0) for f

′(x0). Then df and dx stand for very small
(”infinitesimal”) differences f(x0 + h)− f(x0) and (x0 + h)− x0.

• In physics f is often a function of the time t. Then, we often write

ḟ(t0) =
df

dt
(t0)

for the derivative of f at the point t0.
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2.2. DIFFERENTIAL CALCULUS

Figure 2.5: Tangent and secant

• The limit in the definition of the derivative doesn’t exist for every function every-

where. However, we will only work with functions which are ”nice enough” and

we will always assume the limit exists everywhere.

• One often calls the derivative f ′(x0) the ”instantaneous rate of change” of f at
the point x0, because it tells how fast f is changing at x0. With the help of the
derivative, we can approximate f near x0: For ∆x small, we have

f(x0 +∆x) ≈ f(x0) + ∆x · f ′(x0), (2.2)

since f(x0) +∆x · f ′(x0) is the value of the tangent line at the point x0 + h (see
fig. 2.6).
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Figure 2.6: Derivative as approximation

Example:

We calculate the derivative of the function f(x) = x2 at the point x0 = 1. So we
calculate

f ′(1) = f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

(1 + h)2 − 12

h

= lim
h→0

1 + 2h+ h2 − 1

h
= lim

h→0

2h+ h2

h

= lim
h→0

(2 + h) = 2.

Mostly, we do not only want to know the derivative of f at some point x0 (as in the
example), but generally at an arbitrary point. We define the derivative function of f
(mostly, we only say derivative of f ) as the function f ′ = df

dx , which maps every real

number x to the derivative f ′(x) of f at the point x. Therefore the derivative f ′ of
a function f is again a function. We also say ”differentiate” instead of ”calculating the
derivative”.
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Example:

We calculate the derivative function of f(x) = x2. We proceed just as before, but
we write x instead of x0 = 1:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2hx+ h2 − x2

h
= lim

h→0

2hx+ h2

h

= lim
h→0

(2x+ h) = 2x.

So the derivative of f(x) = x2 is f ′(x) = 2x.

One can show analogously, that for a positive integer n, the derivative of f(x) = xn is
the function f ′(x) = n ·xn−1. For example for f(x) = x25, we have f ′(x) = 25 ·x24,
or for g(x) = x we have g′(x) = 1 (this can be verified immediately, since the slope of
g(x) = x is equal to 1 everywhere).

2.2.2 Differentiation rules

Often it is not necessary to calculate the derivative explicitly using the limit (2.1), since

often the function is a combination of simpler functions, whose derivatives are already

known. In this chapter we look at the corresponding differentiation rules.

Factor rule: Let s be a real number and g a function. If f(x) = s · g(x),
then the derivative f ′(x) = s · g′(x).

Sum rule: Let g and k be functions. If f(x) = g(x) + k(x), then f ′(x) =
g′(x) + k′(x).
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Proof:

• Let f(x) = s · g(x). Then we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

s · g(x+ h)− s · g(x)
h

= lim
h→0

(
s · g(x+ h)− g(x)

h

)
= s · lim

h→0

g(x+ h)− g(x)

h

= s · g′(x).

• Let f(x) = g(x) + k(x). Then we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

g(x+ h) + k(x+ h)− (g(x) + k(x))

h

= lim
h→0

g(x+ h)− g(x) + k(x+ h)− k(x)

h

= lim
h→0

(
g(x+ h)− g(x)

h
+

k(x+ h)− k(x)

h

)
= lim

h→0

g(x+ h)− g(x)

h
+ lim

h→0

k(x+ h)− k(x)

h
= g′(x) + k′(x).

�

Example:

We calculate the derivative of f(x) = 3x4 − 2x2. We set g(x) = 3x4 und k(x) =
−2x2, so we have f(x) = g(x) + k(x). Using the factor rule (and the rule for
derivatives of powers in the last section), we get g′(x) = 3 · 4 · x3 = 12x3 and
k′(x) = (−2) · 2 · x = −4x. Using the sum rule, we get f ′(x) = g′(x) + k′(x) =
12x3 − 4x.

We are now able to differentiate sums (and also differences using the factor rule). We

also want to differentiate products and quotients. The first guess (g(x) · k(x))′ = g′(x)·
k′(x) can be easily proved to be wrong, for example by looking at g(x) = k(x) = x.
The correct rules are:
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Product rule: Let g and k be functions. If f(x) = g(x) · k(x), then we
have

f ′(x) = g′(x) · k(x) + g(x) · k′(x).

Quotient rule: Let g and k be functions. If f(x) = g(x)
k(x) , then we have

f ′(x) =
g′(x) · k(x)− g(x) · k′(x)

(k(x))2
.

Proof:

• Let f(x) = g(x) · k(x). Then we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

g(x+ h) · k(x+ h)− g(x) · k(x)
h

= lim
h→0

g(x+ h) · k(x+ h)− g(x+ h) · k(x) + g(x+ h) · k(x)− g(x) · k(x)
h

= lim
h→0

k(x) · (g(x+ h)− g(x)) + g(x+ h) · (k(x+ h)− k(x))

h

= lim
h→0

k(x) · (g(x+ h)− g(x))

h
+ lim

h→0

g(x+ h) · (k(x+ h)− k(x))

h

= k(x) · lim
h→0

g(x+ h)− g(x)

h
+ lim

h→0
g(x+ h) · lim

h→0

k(x+ h)− k(x)

h

= g′(x) · k(x) + g(x) · k′(x)

• The quotient rule follows from the product rule: Let f(x) = g(x)
k(x) . Then we have g(x) =

f(x) · k(x). Therefore by the product rule g′(x) = f ′(x) · k(x) + f(x) · k′(x). If we
solve for f ′(x) and plug in f(x) = g(x)

k(x) , we find

f ′(x) =
g′(x)− f(x) · k′(x)

k(x)

=
g′(x)− g(x)

k(x) · k
′(x)

k(x)

=
g′(x) · k(x)− g(x) · k′(x)

(k(x))
2 .
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�

Example:

1. We calculate the derivative of f(x) = x−1
x+1 : We set g(x) = x−1 and k(x) =

x + 1. Then we have f(x) = g(x)
k(x) . Furthermore g

′(x) = 1 and k′(x) = 1.
Therefore by the quotient rule:

f ′(x) =
g′(x) · k(x)− g(x) · k′(x)

(k(x))2
=

1 · (x+ 1)− (x− 1) · 1
(x+ 1)2

=
2

(x+ 1)2

2. For a positive integer n, let be f(x) = 1
xn = x−n. Then we have by the

quotient rule

f ′(x) =
(1)′ · xn − 1 · (xn)′

(xn)2
=

0 · xn − 1 · n · xn−1

x2n

= −n · xn−1−2n = −n · x−n−1 = −n · 1

xn+1

Especially, we have found that the rule (xn)′ = n·xn−1 also holds for negative

n.

We are now able to differentiate all polynomial functions and all fractions of polynomial

functions. However, functions often appear as compositions of two functions. For ex-

ample the function f(x) = (x2− 3x+13)17, can be written as f(x) = u(v(x)), where
u(y) = y17 and v(x) = x2−3x+13. Theoretically, we could calculate f ′ by expanding
(x3 − 3x + 13)17 and applying the above rules, but that would not be a very satisfying
solution. We now formulate the chain rule, which deals with such compositions.

Chain rule: Let u and v be functions and f(x) = u(v(x)). Then

f ′(x) = u′(v(x)) · v′(x).

It is easy to remember the chain rule, using the notation f ′ = df
dx : We formally ”expand
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the fraction” and get

f ′ =
df

dx
=
du(v)

dx
=
du(v)

dv
· dv
dx

= u′(v) · v′

Proof: Let f(x) = u(v(x)). Then we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

u(v(x+ h))− u(v(x))

h

= lim
h→0

(
u(v(x+ h))− u(v(x))

v(x+ h)− v(x)
· v(x+ h)− v(x)

h

)
= lim

h→0

u(v(x+ h))− u(v(x))

v(x+ h)− v(x)
· lim
h→0

v(x+ h)− v(x)

h

= lim
h→0

u(v(x+ h))− u(v(x))

v(x+ h)− v(x)
· v′(x)

We now define ĥ = v(x+ h)− v(x). For h → 0, we also have ĥ → 0 (because we assumed v
to be ”nice enough”). Therefore

lim
h→0

u(v(x+ h))− u(v(x))

v(x+ h)− v(x)
= lim

h→0

u(v(x) + (v(x+ h)− v(x)))− u(v(x))

v(x+ h)− v(x)

= lim
ĥ→0

u(v(x) + ĥ)− u(v(x))

ĥ
= u′(v(x)).

We get f ′(x) = u′(v(x)) · v′(x). �

Example:

We calculate the derivative of f(x) = (x2−3x+13)17. We have f(x) = u(v(x)),
where u(y) = y17 and v(x) = x2 − 3x + 13. We differentiate u and v and get
u′(y) = 17y16 and v′(x) = 2x − 3. Therefore f ′(x) = u′(v(x)) · v′(x) =
17 · (x2 − 3x+ 13)16 · (2x− 3).
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2.2.3 More derivatives

We want to differentiate more functions. We start with the trigonometric functions sine,

cosine and tangent. We will always measure angles in radians and not in degrees.2 The

graphs of sine and cosine are presented in fig. 2.7.

Figure 2.7: The graphs of sine and cosine

We now have a closer look at the graph of the sine function f(x) = sin(x) (see. fig. 2.8).
The slope at the point 0 seems to be approximately f ′(0) ≈ 1. At the point π

2 , the sine

function obtains its maximum, therefore the derivative is f ′ (π
2

)
= 0. At the point π, the

derivative is again approximately f ′(π) ≈ −1, at the point 3π
2 it is again f ′ (3π

2

)
= 0,

etc. We can draw the derivative function (see fig. 2.8). If we compare the figures 2.7 und

2.8, we conjecture that the derivative of the sine function is f ′(x) = cos(x).

One can indeed prove this, but we don’t do this here, since the proof is quite technical.

Analogously, one can find the derivative of g(x) = cos(x): It is g′(x) = − sin(x).
For the tangent, we use

tan(x) =
sin(x)

cos(x)

2Repetition: The magnitude of an angle in radians is the length of the corresponding arc of the unit circle.

For example 360◦ correspond to 2π in radians, 180◦ correspond to π. In general: y◦ corresponds to

y◦

360◦
· 2π =

y◦

180◦
· π

in radians.
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Figure 2.8: Derivative of the sine function

and apply the quotient rule. Then we have (where we use that sin2(x) + cos2(x) = 1):

tan′(x) =
sin′(x) · cos(x)− sin(x) · cos′(x)

(cos(x))2

=
cos(x) · cos(x)− sin(x) · (− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)
=

1

cos2(x)
.

Alternatively we can also write this differently and get:

tan′(x) =
cos2(x) + sin2(x)

cos2(x)
= 1 +

sin2(x)

cos2(x)
= 1 + tan2(x).

Finally, we have

tan′(x) =
1

cos2(x)
= 1 + tan2(x).

To summarize:

Derivatives of trigonometric functions:

sin′(x) = cos(x)

cos′(x) = − sin(x)

tan′(x) =
1

cos2(x)
= 1 + tan2(x)
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Example:

We calculate the derivative of f(x) = sin(x2) + (sin(x))2 For g(x) = sin(x2) we
get using the chain rule:

g′(x) = sin′(x2) · 2x = 2x · cos(x2).

for k(x) = (sin(x))2 we get also using the chain rule

k′(x) = 2 · sin(x) · sin′(x) = 2 sin(x) · cos(x).

Using the sum rule, we finally get

f ′(x) = g′(x) + k′(x) = 2x · cos(x2) + 2 sin(x) · cos(x).

Exponential function: We now want to find the derivative of the exponential func-

tion

f(x) = ax,

where we should have a > 0. We start with the limit (2.1). Using the power rules, we
get:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

ax+h − ax

h

= lim
h→0

ax · ah − ax

h
= lim

h→0

(
ah − 1

h
· ax
)

=

(
lim
h→0

ah − 1

h

)
· ax (2.3)

We see, that the limit

lim
h→0

ah − 1

h
(2.4)

doesn’t depend on x anymore, so it is simply a number.
Exercise: What is the geometric meaning of the limit (2.4)?

We want to understand this limit better and calculate it approximately for a = 2 and 3,
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by plugging in small numbers for h (see table 2.1). For a = 2, the limit (2.4) is smaller

h = 0.1 h = 0.01 h = 0.001
2h−1
h 0.717... 0.695... 0.693...

3h−1
h 1.161... 1.104... 1.099...

Table 2.1: Calculation of the limit (2.4) for a = 2, 3

than 1 and for a = 3 it is bigger 1. Therefore there exists a number e, with 2 < e < 3,
such that

lim
h→0

eh − 1

h
= 1

We therefore find with equation (2.3), that

d

dx
ex = ex.

The derivative of ex is again ex. One can calculate that

e = 2.7182...

The number e is called Euler’s number and plays an important role in mathematics.

More about e:We defined e as the number, that satisfies limh→0
eh−1
h = 1. We want to find a

better representation for e. By the definition of the limit, we get for very small h

eh − 1

h
≈ 1.

Therefore eh ≈ 1 + h, respectively

e ≈ (1 + h)
1
h .

If we take the limit for h → 0, the ≈ gets again a =. If we set h = 1
n , we find

e = lim
n→∞

(
1 +

1

n

)n

.

This is a widely used representation for e and is often also seen as the definition of e. �
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We come back to the question about the derivative of ax. For this, we define the natural
logarithm

ln(x) = loge(x).

This means that the number u = ln(x) satisfies the equation

eu = eln(x) = x.

We can use this as follows: Let a > 0 and f(x) = ax. With the power rules, we find

f(x) = ax =
(
eln(a)

)x
= eln(a)·x.

With the chain rule:

f ′(x) = eln(a)·x · ln(a) =
(
eln(a)

)x
· ln(a) = ax · ln(a).

The derivative of ax therefore is ln(a) · ax.

An interesting result is the derivative of ln(x). It holds

d

dx
ln(x) =

1

x
.

Proof: We use the identity x = eln(x). If we differentiate this on both sides, we get using the chain
rule

1 =
d

dx
x =

d

dx
eln(x) = eln(x) · d

dx
ln(x) = x · d

dx
ln(x).

Thus
d

dx
ln(x) =

1

x
.

�
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Example:

1. We calculate the derivative of f(x) = 23x. Using the chain rule, we get
f ′(x) = 3 · ln(2) · 23x.

2. We calculate the derivative of f(x) = xr for any real number r. We notice
that

f(x) = xr =
(
eln(x)

)r
= eln(x)·r.

We set u(y) = ey and v(x) = ln(x) · r. Therefore we have f(x) = u(v(x)).
By the chain rule, we get

f ′(x) = u′(v(x)) · v′(x) = eln(x)·r · r · 1
x
= r · x

r

x
= r · xr−1.

2.2.4 Overview about derivatives

We summarize in table 2.2 the most important functions and their derivatives. They

appear very often and one should know them by heart.

f(x) f ′(x)

xr r · xr−1

ex ex

ax ln(a) · ax
ln(x) 1

x
sin(x) cos(x)
cos(x) − sin(x)
tan(x) 1

cos2(x)
= 1 + tan2(x)

Table 2.2: Derivatives of the most important functions
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2.2.5 Higher derivatives

We define the second derivative f ′′(x) of a function f(x) as the derivative of f ′(x).
Analogously, we define the third derivative f ′′′(x) as the derivative of the second deriva-
tive f ′′(x), etc. In general, we define the n-th derivative f (n)(x) recursively as the deriva-
tive of the (n− 1)-th derivative f (n−1)(x).

Example:

1. Let f(x) = ex. Then

f ′′(x) =
d

dx
(f ′(x)) =

d

dx
(ex) = ex.

2. Let g(x) = sin(x). Then

g′′(x) =
d

dx
(g′(x)) =

d

dx
(cos(x)) = − sin(x).

3. Let k(x) = 1
2x

2. Then

k′′(x) =
d

dx
(k′(x)) =

d

dx
(x) = 1.

2.2.6 Taylor approximation

We have seen at the very beginning (see equation (2.2)) that the derivative of a function

f at a point x0 can be used to approximate the function f at x around x0: One just
calculates the value of the linear function that is tangent to f at x0, i.e. at x around x0
one approximates

f(x) ≈ f(x0) + (x− x0) · f ′(x0) =: T1,f,x0(x).

This is the best linear approximation of the function f near x0.
This is already a special case (and by far the most important!) of a concept called Tay-

lor approximation. The idea is the following: Why restrict to linear approximations?
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How about the best quadratic approximation? For this we look for a quadratic func-

tion T2,f,x0(x) such that at x0 it goes through f(x0) and has the same first and second
derivative as f at x0. It is not hard to show that T2,f,x0(x) is given by

3

T2,f,x0(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2.

Figure 2.9: Graphs of f , T1,f,x0
and T2,f,x0

Similarly, we can find the polynomial Tn,f,x0(x) of degree n, which approximates f best
around x0, i.e. the polynomial of degree n such that for all k ≤ n

T
(k)
n,f,x0

(x0) = f (k)(x0).

Definition: This polynomial Tn,f,x0(x) is called Taylor polynomial of degree
n of f at x0 and given by

Tn,f,x0(x) = f(x0) +

n∑
k=1

1

k!
f (k)(x0)(x− x0)

k

= f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 + . . .+
1

n!
f (n)(x0)(x− x0)

n

3This is essentially because a quadratic function has three ”degrees of freedom”, i.e. three parameters

can be chosen freely.
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where n! = n · (n− 1) · . . . · 2 · 1.(We define 0! = 1.)

Figure 2.10 shows the Taylor polynomials up to degree 5 for the same function f as
above.

Figure 2.10: Taylor polynomials of f (solid line) up to degree 5.

Example:

1. Look at f(x) = ex and x0 = 0. Since d
dxe

x = ex, we have f (n)(x) = ex for

all n. Thus f (n)(x0) = e0 = 1 for all n. Thus

Tn,f,0(x) = 1 +

n∑
k=1

1

k!
xk

is the best polynomial approximation for ex of degree n around 0. Most im-
portantly, we have

ex ≈ 1 + x

for x around 0.
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2. Look at f(x) = sin(x) and x0 = 0. Then f ′(x) = cos(x), so f ′(0) = 1 and
f ′′(x) = − sin(x), so f ′′(0) = 0. Thus

T2,f,0(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 = x,

in particular for x around 0,

sin(x) ≈ x.

3. Look at f(x) = cos(x) and x0 = 0. We have f(0) = cos(0) = 1. Further-
more f ′(x) = − sin(x), so f ′(0) = − sin(0) = 0 and f ′′(x) = − cos(x), so
f ′′(0) = − cos(0) = −1. Thus

T2,f,0(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 = 1− x2

2
,

which means that for x around 0,

cos(x) ≈ 1− x2

2
.

One can actually state more precisely how accurate the function f is approximated by
Tn,f,x0 : It holds that (if f satisfies certain conditions

4)

f(x) = Tn,f,x0(x) +O(|x− x0|n+1).

O(|x − x0|n+1) means that the approximation error is of order |x − x0|n+1, i.e. there

is a constant C > 0 such that when |x− x0| is small enough,

|f(x)− Tn,f,x0(x)| ≤ C · |x− x0|n+1.

4that we always assume to hold...
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2.2.7 The idea of differential equations

Differential equations are (functional) equations that also contain derivatives of the func-

tions. The solutions of a differential equation are functions. Differential equations are

crucial for physics since many physical laws can be formulated using differential equa-

tions.

Let us start with an example:

f ′(x) = f(x).

This equation means that we are looking for a function f such that its derivative f ′ is
equal to f . We know already that f(x) = ex is a solution to this differential equation.
But actually, for every c ∈ R, also f(x) = cex is a solution. So the solution to the above
differential equation is not unique. To ensure uniqueness of the solution, we also need

to fix the value of f at a point e.g. x = 0. If we then present the differential equation as

f ′(x) = f(x), f(0) = 3,

(a so called initial value problem) the solution is given by f(x) = 3ex. One can show
that this solution is actually the unique solution.

We do not develop the theory of differential equations in this script (There are books on

this topic...). We just mention the general result that, if the differential equation does not

behave too bad, then for any given initial value there always exists a unique solution.

Example:

1. We slightly generalize our first example. Let c ∈ R and f0 > 0, and let

f ′(x) = cf(x), f(0) = f0.

Then the solution is given by

f(x) = f0e
cx.

2. Look at the initial value problem

f ′(x) = 1 + f(x)2, f(0) = 0.

We already know that

f(x) = tan(x)

is a solution.
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3. We now look at a second order differential equation (i.e. also second deriva-

tives appear). To make the solution unique, we need two initial conditions, for

example on f(0) and f ′(0). Let α > 0 and f0 ∈ R, and let

f ′′(x) = −α2f(x), f(0) = f0, f
′(0) = 0.

This is the differential equation corresponding to a harmonic oscillator. The

solution to this differential equation is given by

f(x) = f0 cos(αx).

4. We generalize this equation a bit: Let α > 0 again, and let

f ′′ + 2αf ′ + α2f = 0.

Then the solution is given by

f(x) = (b1 + b2t)e
−αt,

where b1 and b2 are chosen according to the initial conditions. This corre-
sponds to the case of critical damping of a harmonic oscillator.

2.3 Integral calculus

Roughly speaking, integral calculus deals with the area enclosed by the graphs of func-

tions. We will see that differential and integral calculus are closely related. The main

reference for this chapter is [2].

2.3.1 Antiderivatives

Definition: An antiderivative of a function f is a function F , which satisfies

f(x) = F ′(x) =
dF

dx
(x).

Calculating an antiderivative is therefore the reverse of calculating the derivative. For

example an antiderivative of f(x) = x2 is the function F (x) = 1
3x

3, since F ′(x) =
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1
3 · 3 · x2 = x2 = f(x). However, the antiderivative F isn’t unique. For example the

function G(x) = 1
3x

3 + 42 also satisfies G′(x) = f(x).
In general: If f is a function and F an antiderivative of f , then for any real number c,
also F (x) + c is an antiderivative of f . This follows because of

d

dx
(F (x) + c) =

d

dx
F (x) + 0 = F ′(x) = f(x).

It even holds that for two arbitrary antiderivatives F and G of f there exists a constant
c such that

G(x) = F (x) + c.

(If F and G are antiderivatives of f , then the derivative of the difference F (x)−G(x)
is

d

dx
(F (x)−G(x)) =

d

dx
F (x)− d

dx
G(x) = f(x)− f(x) = 0.

Therefore F (x)−G(x) is constant.)

Antiderivatives of many functions can be easily calculated. We can essentially interchange

the two columns of table 2.2 and get table 2.3. In the table for each function there is only

one antiderivative listed. One obtains all the other antiderivatives by adding the corre-

sponding constant c. We have a factor rule and a sum rule for antiderivatives. They

f(x) F (x)

xr for r 6= −1 1
r+1 · xr+1

1
x ln |x|
ex ex

ax ax

ln(a)

sin(x) − cos(x)
cos(x) sin(x)

Table 2.3: Antiderivatives of the most important functions

correspond to the factor and sum rules for derivatives.

Factor rule: Let f be a function with antiderivative F and let s be a real
number. Then s · F is an antiderivative of s · f .
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Sum rule: Let f and g be functions with antiderivatives F and G. Then
F +G is an antiderivative of f + g.

2.3.2 Integral as an area

We define the integral of a function f as the ”signed area” between the graph of f and
the x-axis.

Definition: Let f be a function and let a and b be real numbers with a ≤ b.
Then the integral of f from a to b

ˆ b

a
f(x)dx

is the area between the graph of f and the x-axis in the region between a and
b, where the area under the x-axis counts negative (see fig. 2.11).

So the integral is a real number.

Figure 2.11: The integral
´ b
a
f(x)dx

In the example in figure 2.11, the integral is

ˆ b

a
f(x)dx = A−B + C.
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Example:

We calculate ˆ 2

1
f(x)dx

for the function f(x) = x. We look at figure 2.12 and see, that the area under the
graph between 1 and 2 is a trapezoid with height (2− 1) and side lengths 1 and 2.

Figure 2.12: The integral
´ 2
1
x dx

Therefore the area of this trapezoid is

ˆ 2

1
x dx =

1 + 2

2
· (2− 1) =

3

2
.

For a > b, we define ˆ b

a
f(x)dx = −

ˆ a

b
f(x)dx.
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In this case, the area above the x-axis counts negative and the area under the x-axis
positive.

For arbitrary a, b and c, we then have

ˆ c

a
f(x)dx =

ˆ b

a
f(x)dx+

ˆ c

b
f(x)dx. (2.5)

This follows because one can simply add the corresponding areas. This property is called

”interval additivity”.

Approximation of integrals using Riemann sums: Let us mention a useful way

to approximate integrals, which can be generalized later. One can calculate the integral´ b
a f(x)dx of a function f by approximating it using so-called Riemann sums: One di-
vides the interval [a, b] into a sequence of points a = x0 < x1 < . . . < xn−1 < xn = b
and calculates the area of the rectangles with width∆xk := xk−xk−1 and height f(xk)
for all k = 1, . . . , n (see figure 2.13). The sum of the areas of the rectangles is

n∑
k=1

f(xk) · (xk − xk−1) =

n∑
k=1

f(xk) ·∆xk.

If one makes the partition a = x0 < x1 < . . . < xn−1 < xn = b finer (i.e. increases
n) then the sum of the areas of the rectangles will converge to the integral

ˆ b

a
f(x)dx.

The notation of the integral is motivated by this approximation: In the limit, the
∑

becomes an
´
and the ∆xk becomes a dx.

2.3.3 Fundamental theorem of calculus

In this section, we are going to connect antiderivatives and integrals. The idea is to vary

the upper limit of the integral. In this way, one gets a function of the upper limit of the

integral. Let f be a function and a an arbitrary number. Then we define

If,a(x) =

ˆ x

a
f(t)dt.
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Figure 2.13: Approximation of integral with sums

Since x already appears in the limits of the integrals, we have to take another integration
variable t. The expression If,a(x) is independent of t, which is just a ”dummy” variable.
Of course, we have for any real number b that

If,a(b) =

ˆ b

a
f(t)dt =

ˆ b

a
f(x)dx.

Example:

Let f(x) = x. We calculate If,1(x). We can proceed analogously as in the example
above, we only have to replace 2 by x. Then we have

If,1(x) =

ˆ x

1
f(t)dt =

ˆ x

1
t dt =

1 + x

2
· (x− 1) =

x2 − 1

2
.

If we differentiate If,1(x) =
x2−1
2 with respect to x, we get

I ′f,1(x) =
d

dx

(
x2 − 1

2

)
= x = f(x).
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This is not a coincidence, but it’s exactly the statement of the fundamental theorem of

calculus:

Fundamental theorem of calculus: Let f be a function and a a real
number. Then If,a is an antiderivative of f . Concretely, this means:

I ′f,a(x) =
d

dx
(If,a(x)) =

d

dx

(ˆ x

a
f(t)dt

)
= f(x).

Proof: We want to calculate

I ′f,a(x) = lim
h→0

If,a(x+ h)− If,a(x)

h
.

For this, we look at If,a(x + h) − If,a(x) more closely. Using the interval additivity (2.5), we
have

If,a(x+ h)− If,a(x) =

ˆ x+h

a

f(t)dt−
ˆ x

a

f(t)dt =

ˆ x+h

x

f(t)dt. (2.6)

We look at Figure 2.14. Let fh,min be the minimal value of f between x and x + h, and let
fh,max be the maximal value of f between x and x+ h. Then we surely have

h · fh,min ≤
ˆ x+h

x

f(t)dt ≤ h · fh,max.

If we divide by h, we get

fh,min ≤ 1

h
·
ˆ x+h

x

f(t)dt ≤ fh,max.

Using equation (2.6), we have

fh,min ≤ If,a(x+ h)− If,a(x)

h
≤ fh,max.

If we let go h → 0, then fh,min → f(x) and fh,max → f(x), hence

f(x) ≤ lim
h→0

If,a(x+ h)− If,a(x)

h
≤ f(x).

Finally, we get

I ′f,a(x) = lim
h→0

If,a(x+ h)− If,a(x)

h
= f(x)

and therefore If,a is an antiderivative of f . �
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Figure 2.14: Proof of the fundamental theorem of calculus

The fundamental theorem of calculus gives us a useful tool to calculate integrals. We

want to know the value of the integral

ˆ b

a
f(x)dx = If,a(b).

Let F be an antiderivative of f . From the fundamental theorem of calculus, we know

that If,a(x) also is an antiderivative of f(x). Therefore there exists a real number c such
that

If,a(x) = F (x) + c.

But then we have

F (b)− F (a) = If,a(b) + c− (If,a(a) + c) = If,a(b)− If,a(a) = If,a(b),

since

If,a(a) =

ˆ a

a
f(x)dx = 0.

Hence we get

ˆ b

a
f(x)dx = If,a(b) = F (b)− F (a). (2.7)
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We emphasize again, that the formula (2.7) does not depend on the choice of the an-

tiderivative.

For F (b)− F (a), we also write

[F (x)]ba = F (b)− F (a)

Example:

1. We calculate ˆ 2

1
x dx.

An antiderivative of f(x) = x is given by F (x) = 1
2x

2. So using equation

(2.7), ˆ 2

1
x dx =

[
1

2
x2
]2
1

=
1

2
· 22 − 1

2
· 12 = 3

2
.

We indeed get the same result as above.

2. We calculate ˆ 1

0
x2 dx.

An antiderivative of f(x) = x2 is given by F (x) = 1
3x

3. So we get

ˆ 1

0
x2 dx =

[
1

3
x3
]1
0

=
1

3
· 13 − 1

3
· 03 = 1

3
.

3. We calculate ˆ π

0
sin(x) dx.

An antiderivative of sin(x) is given by − cos(x). Therefore,
ˆ π

0
sin(x) dx = [− cos(x)]π0 = − cos(π)− (− cos(0)) = −(−1) + 1 = 2.
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The fundamental theorem of calculus motivates the following notation: Let f be a func-
tion. Then we also write ˆ

f(x)dx

for an arbitrary antiderivative of f . Note that this notation is not really mathematically
correct, since

´
f(x)dx is not unique, but it should always be clear from the context,

what is meant.

2.3.4 More integration rules

Let f be a function. If we are given an antiderivative of f , it is in general easy to check
that F is really an antiderivative of f , since we just have to calculate the derivative F ′.
But it can be very difficult to find an antiderivative.5 In this section we will present more

methods to calculate antiderivatives in certain situations. The first one is the method of

integration by parts. Integration by parts essentially is the reversed product rule. The

second one is integration by substitution, which is the reversed chain rule.

Integration by parts: We start with the product rule. Let u and v be two functions
and f(x) = u(x) · v(x). Then the product rule says that

f ′(x) =
d

dx
(u(x) · v(x)) = u′(x) · v(x) + u(x) · v′(x).

If we calculate antiderivatives on both sides, we get

u(x) · v(x) =
ˆ (

u′(x) · v(x) + u(x) · v′(x)
)
dx

=

ˆ
u′(x) · v(x)dx+

ˆ
u(x) · v′(x)dx.

This implies

ˆ
u′(x) · v(x)dx = u(x) · v(x)−

ˆ
u(x) · v′(x)dx. (2.8)

This equation may look very abstract at first glance and will now be clarified by some

examples.

5There even exist functions, where it is analytically impossible. E.g.the function f(x) = e−x2

does not

have an antiderivative that can be expressed by other functions.
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Example:

1. We calculate an antiderivative of ex · x. Set u(x) = ex and v(x) = x. Then

ex · x = u′(x) · v(x).

Using equation (2.8) an antiderivative of ex · x is given by
ˆ

ex · x dx =

ˆ
u′(x) · v(x)dx

= u(x) · v(x)−
ˆ

u(x) · v′(x)dx

= ex · x−
ˆ

ex · 1 dx

= ex · x− ex.

If we differentiate ex ·x−ex, we see that it is indeed an antiderivative of ex ·x.

2. We calculate an antiderivative of sin2(x). We set u(x) = − cos(x) and
v(x) = sin(x). Then u′(x) = sin(x) and therefore

sin2(x) = u′(x) · v(x).

Using equation (2.8), we calculate

ˆ
sin2(x) dx =

ˆ
u′(x) · v(x)dx

= u(x) · v(x)−
ˆ

u(x) · v′(x)dx

= − cos(x) · sin(x)−
ˆ
(− cos(x)) · cos(x)dx

= − cos(x) · sin(x) +
ˆ
cos2(x)dx.

We now use

cos2(x) = 1− sin2(x)
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and get ˆ
sin2(x) dx = − cos(x) · sin(x) +

ˆ
cos2(x)dx

= − cos(x) · sin(x) +
ˆ (

1− sin2(x)
)
dx

= − cos(x) · sin(x) +
ˆ

1 dx−
ˆ
sin2(x)dx

= − cos(x) · sin(x) + x−
ˆ
sin2(x)dx.

Now we solve for
´
sin2(x)dx and getˆ
sin2(x) dx =

1

2
· (− cos(x) · sin(x) + x)

=
x

2
− cos(x) · sin(x)

2
.

Again, we can check by differentiating that this is indeed an antiderivative of

sin2(x).

3. We calculate an antiderivative of ln(x). This does not look like a case for
integration by parts, but we can write

ln(x) = 1 · ln(x).

Then we define u(x) = x and v(x) = ln(x). Now we have

ln(x) = u′(x) · v(x).

Using equation (2.8) and v′(x) = 1
x we getˆ

ln(x)dx =

ˆ
1 · ln(x)dx =

ˆ
u′(x) · v(x)dx

= u(x) · v(x)−
ˆ

u(x) · v′(x)dx

= x · ln(x)−
ˆ

x · 1
x
dx

= x · ln(x)−
ˆ

1 dx

= x · ln(x)− x.
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Integration by substitution: The second method we look at is integration by sub-

stitution. This is essentially the converse of the chain rule. We start with an example: We

want to calculate an antiderivative of

f(x) = 2x · ex2
.

We can write f as
f(x) = k′(x) · g′(k(x)),

where k(x) = x2 and g(y) = ey . Applying the chain rule, we get

f(x) = k′(x) · g′(k(x)) = d

dx
g(k(x)).

Therefore by definition of an antiderivative,

F (x) = g(k(x)) = ex
2

is an antiderivative of f . This is actually the whole idea of integration by substitution.

Integration by substitution (version 1): Let u and v be functions and
let U be an antiderivative of u. Then U(v(x)) is an antiderivative of u(v(x)) ·
v′(x). Hence ˆ

u(v(x)) · v′(x)dx = U(v(x)).

One can check thatU(v(x)) is really an antiderivative of u(v(x))·v′(x) by differentiating
using the chain rule. The simplest application of integration by substitution is the case

where v is of the form
v(x) = ax+ b.

If u is a function and U is an antiderivative of u, then an antiderivative of u(ax + b) is
given by

ˆ
u(ax+ b) dx =

1

a

ˆ
u(ax+ b) · a dx

=
1

a
U(ax+ b).
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Remark: Integration by substitution can be remembered and applied using a simple

trick: We simply pretend that we can handle dv, dx and dv
dx just as normal variables. Then

we can do the following formal6 calculation. Write v′(x) = dv
dx . Then ”v

′(x)dx = dv”,
so ˆ

u(v(x)) · v′(x)dx =

ˆ
u(v)dv = U(v(x)).

Example:

1. We calculate an antiderivative of e3x−2:

ˆ
e3x−2 dx =

1

3
· e3x−2.

2. We calculate an antiderivative of tan(x). For this we write

tan(x) =
sin(x)

cos(x)
= −− sin(x)

cos(x)
.

Set v(x) = cos(x). Then dv
dx = − sin(x), so we write

− sin(x)dx = dv.

ˆ
tan(x) dx = −

ˆ
1

v(x)
· (− sin(x)) dx

= −
ˆ

1

v
dv = − ln(|v|) = − ln(| cos(x)|).

Definite integrals: If one calculates definite integrals using the substitution rule, one

gets the following formula:

Integration by substitution (version 2): Let u and v be functions and
let a and b be real numbers. Thenˆ b

a
u(v(x)) · v′(x)dx =

ˆ v(b)

v(a)
u(v)dv.

6Note that here ”formal” means that we write things that are not properly defined.
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Example:

We calculate ˆ π
2

0
sin(x) · cos(x)dx.

Set

v(x) = sin(x).

Thus dv = cos(x)dx, so

ˆ π
2

0
sin(x) · cos(x)dx =

ˆ π
2

0
v(x) · cos(x)dx

=

ˆ v(π
2
)

v(0)
vdv

=

ˆ sin(π
2
)

sin(0)
v dv

=

[
v2

2

]1
0

=
1

2
.

Two more elaborate examples:

At a first glance, functions for which one can apply integration by substitution seem

to have a very special form. But actually, the manipulations seen above can be

applied to a wide range of functions, which we want to illustrate on two examples.

1. We want to calculate an antiderivative of

1

ex + 1
.

We set v(x) = ex. Thus
dv = exdx.
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Using integration by substitution, we have

ˆ
1

ex + 1
dx =

ˆ
1

(ex)2 + ex
· exdx

=

ˆ
1

v(x)2 + v(x)
· exdx

=

ˆ
1

v2 + v
dv

Now we write

1

v2 + v
=

1

v(v + 1)
=

(v + 1)− v

v(v + 1)

=
v + 1

v(v + 1)
− v

v(v + 1)

=
1

v
− 1

v + 1
.

We can simply integrate this and get that

ˆ
1

v2 + v
dv = ln(|v|)− ln(|v + 1|).

Therefore

ˆ
1

ex + 1
dx =

ˆ
1

v2 + v
dv

= ln(|ex|)− ln(|ex + 1|)
= ln(ex)− ln(ex + 1)

= x− ln(ex + 1).

If one differentiates x− ln(ex + 1) with respect to x, one can check that this
is indeed an antiderivative of 1

ex+1 .

2. We want to find an antiderivative of√
1− x2.
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This is a case where one can apply integration by substituion ”backwards”, i.e.

one replaces x by some function x(u) depending on some other variable u.
With a bit of experience1, one sees that

x(u) = cos(u)

could be a good choice for a substitution. Then we have√
1− x2 =

√
1− cos2(u) = sin(u).

Note that x = cos(u), so

dx = − sin(u)du.

Using integration by substitution, we getˆ √
1− x2dx =

ˆ √
1− cos2(u) · (− sin(u))du

=

ˆ
sin(u) · (− sin(u))du

= −
ˆ
sin2(u)du

= −
(
u

2
− cos(u) · sin(u)

2

)
where we used the antiderivative of sin2(u) which we calculated in the section
about integration by parts. Now, we have to write this term as a function of x
again. Note that

sin(u) =
√

1− cos2(u) =
√

1− x2.

Furthermore, we write

u = arccos(cos(u)) = arccos(x).

Therefore ˆ √
1− x2dx = −

(
u

2
− cos(u) · sin(u)

2

)
= −

(
arccos(x)

2
− x ·

√
1− x2

2

)
.

We can differentiate this to see that it is indeed an antiderivative of
√
1− x2.2
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2.3.5 The idea of multidimensional integrals

The idea of integrals is not restricted to functions of one dimension. It can be generalized

to higher dimensions. Let’s illustrate this with an example in three dimensions. Assume

we have some object C , at which we look as a subset of the three dimensional space R3.

We would like to know the mass of C , but we only know the density ρ and the volume
V of C . This is easy, since we can just calculate the massm of C from this information:

m = ρ · V.

But what if the density ρ is not constant? Let us first assume that it is at least piecewise
constant, i.e. we can divideC into disjoint piecesC1, ..., Cn such thatC1∪C2∪...∪Cn =
C and, on each of C1, ..., Cn, the density is constant equal to ρ1, ..., ρn. Furthermore,
let V1, ..., Vn denote the corresponding volumes. Then the total mass of C is just the

sum of all the masses of C1, ..., Cn, i.e.:

m = ρ1 · V1 + ...+ ρn · Vn =

n∑
k=1

ρk · Vk.

Now let us assume that the density ρ is a function of the location ~x in C , i.e. ρ = ρ(~x),
where ~x ∈ C ⊂ R3. Now we can still approximate the mass of C by dividing C into a

large number of small disjoint subsets∆C1, ...,∆Cn, such that∆C1 ∪ ...∪∆Cn = C .
Then for each ∆Ck, we choose a location ~xk ∈ ∆Ck. For k = 1, ..., n let ∆Vk denote

the volume of ∆Ck. Then we approximate the massm of C by

m ≈
n∑

k=1

ρ(~xk) ·∆Vk

where the approximation gets better making the partition finer. This value then converges

to the actual massm of C . In analogy to the one dimensional case, we write

m =

˚
C
ρ(~x)dV (~x).

1One has to guess/see which function is suitable. There are even tables where one can look up the most

common ”standard substitutions”.
2We use that

d

dx
arccos(x) = − 1√

1− x2
.

To see this, one differentiates y = cos(arccos(y)) using the chain rule and

cos
2(x) + sin

2(x) = 1.
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As in the one dimensional case, the intuition is that in the limit the
∑
gets a

˝
and the

∆ gets a d. If we replace the density ρ = ρ(~x) by an arbitrary function f = f(~x), we

x

y

z

dV (~x)

~x

Figure 2.15: An object with a small piece of volume. Dividing it in small pieces of volume

dV allows to assume a constant density (or in general a constant function) on that small

piece. Summing/integrating all these piece times their density ρdV allows to compute the

total mass.

have now already defined ˚
C
f(~x)dV (~x)

for arbitrary7 functions f from R3 to R and subsets C ⊂ R3.

At the moment, we omit the discussion of how one actually calculates those integrals.

It is more important to understand the idea. This idea is not restricted to the three di-

mensional case. If we replace the volume V by the area A, we can similarly define the
integral ¨

C
f(~x)dA(~x)

for a subset C ⊂ R2 and a function f = f(~x) from R2 to R. This integral corresponds
to the (signed) Volume between C and the two dimensional graph of f .

7We implicitly assume that f is ”nice enough”.
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We can generalize this idea even more. For example we can integrate functions on curved

two dimensional surfaces in the tree dimensional space. In the same spirit, we can also

integrate functions along one dimensional curves in three dimensional space. The idea

stays always the same: One cuts the set on which one wants to integrate into small parts

and then assumes the function f to be constant on those small parts. Then one just sums
over all the small parts to approximate the integral.

2.4 Complex Numbers

This Chapter is (except for very small modifications) equal to Chapter 5 in [3], which was

written by Lionel Philippoz.

2.4.1 Introduction

Should you encounter the following equation in a textbook

x2 = 1 (2.9)

and be asked to find its solutions inR, it would not be that difficult to conclude that there
are two of them, namely 1 and −1. But what happens if one slightly modifies Eq. (2.9)
by changing a sign?

x2 = −1 (2.10)

Can you find a real solution? Actually not, since for any real number x, x2 ≥ 0. In
the real numbers,

√
−1 is not defined. This equation thus possesses no solutions in R.

However, one can expand the set of real numbers to the so-called set of complex numbers

C in which Eq. (2.10) actually has two (complex) solutions.

2.4.2 Representation of a complex number, Euler formula

Complex numbers are not so different from real numbers, and all you actually need to

know is that we define a new number i ∈ C such that i2 = −1. And that’s it! You can
now solve Eq. (2.10) in C and find its two solutions: i and −i.

Any complex number z ∈ C can be written as the sum of two numbers:

z = x+ iy (2.11)
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where x, y ∈ R and i as previously defined. x is also called the real part of z (sometimes
written as <(z) or Re(z)), whereas y is called the imaginary part of z (written as =(z) or
Im(z)).
If y = 0, then z is simply a real number, and when x = 0, we say that z is an imaginary
number. As you can see, any complex number can now be defined using two “coordi-

nates” x and y, which means it can actually be represented in a plane, the so-called…com-

plex plane!

R

iR

-1 1 2 3 40

−i

i

2i

3i

z = 3 + 2i

|z|

θ

Figure 2.16: z can be seen as a point in the complex plane, with cartesian coordinates
(x, y) or polar ones (|z| , θ).

Another possibility to describe the position of a point in a plane consists in using polar

coordinates, where one needs to give the distance from the origin as well as the angle

between the x-axis (here the real axis) and the line connecting the origin and the point8.
If you know trigonometry well, you can then easily relate both coordinate systems by

writing:

x = |z| cos(θ)
y = |z| sin(θ)

and z can thus be written as

8If you want to consider z as a vector, then x and y are the components of that vector, |z| the norm of

z and θ the angle between the vector and the x-axis.
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z = x+ iy

= |z| cos(θ) + i |z| sin(θ)
= |z| (cos(θ) + i sin(θ))

= |z| eiθ (2.12)

The last step is actually performed using the Euler formula:

eiθ = cos(θ) + i sin(θ) (2.13)

which we will take as a definition of a complex exponential function in this script. This is

a very important relation which allows one to switch between a trigonometric represen-

tation and an exponential function, which is much more easy to handle with. You can

actually write both trigonometric functions sin(θ) and cos(θ) as a function of complex
exponentials! This is done as follows:

eiθ = cos(θ) + i sin(θ) (2.14)

e−iθ = cos(−θ) + i sin(−θ)

= cos(θ)− i sin(θ) (2.15)

If you now add (resp. substract) Eq. (2.14) and Eq. (2.15), you can eliminate the sin part

(resp. cos) and solve for cos (resp. sin), which leads to

cos(θ) =
eiθ + e−iθ

2
(2.16)

sin(θ) =
eiθ − e−iθ

2i
(2.17)

2.4.3 A first simple application

One useful application of the Euler formula lies in the fact that dealing with trigonometric

function is not always that easy. For instance, do you know by heart how to write sin(2θ)
or cos(2θ)with only functions of the angle θ, not 2θ? If you forgot about those formulas,
just switch to the complex world!
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ei(2θ) = cos(2θ)︸ ︷︷ ︸
<(e2iθ)

+i · sin(2θ)︸ ︷︷ ︸
=(e2iθ)

ei(2θ) =
(
eiθ
)2

= (cos(θ) + i sin(θ))2

= cos2(θ) + 2i sin(θ) cos(θ) + i2 sin2(θ)

= cos2(θ)− sin2(θ)︸ ︷︷ ︸
<(e2iθ)

+i · 2 sin(θ) cos(θ)︸ ︷︷ ︸
=(e2iθ)

where we used the fact that i2 = −1, as you should know by now. It is now easy to
conclude by equating the two expressions of the real part (and identically for the imaginary

part):

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ)

2.4.4 Physical examples

One possible application of complex numbers to physics resides in the representation of

any periodic system which would require trigonometric functions to be described, such

as waves for instance. If we consider a wave function ξ(x, t) 9, it will usually be written
as

ξ(x, t) = ξ0 cos(kx− ωt)

or, using the Euler formula

ξ(x, t) = ξ0 <
(
ei(kx−ωt)

)
However, you will never encounter this notation with the real part (or imaginary part if

you considered a sin-function) in any physics book, where the wave is simply denoted as

ξ(x, t) = ξ0 e
i(kx−ωt)

Physicists simply assume that the real part is taken at the end of their calculations (and

that ways, it is shorter to write and much easier to read, don’t you agree?).

9ξ(x, t) is the displacement of the wave, which depends on the position x and the time t and ξ0 as the
amplitude.
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What is now the velocity ξ̇(x, t) ≡ dξ(x,t)
dt or the acceleration ξ̈(x, t) ≡ d2ξ(x,t)

dt2
? Well,

you just need to differentiate the wave function ξ(x, t), and it is much easier to do it
when considering an exponential function!
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MECHANICS 1

I like to move it, move it.

King Julien
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3 Mechanics 1

Mechanics is one of the most important topics in physics. It describes how a body moves

if the interaction of that body with other bodies is known. For example in Newtonian

mechanics1 the ”how bodies move” is described by the acceleration, and the interaction

by the force. Newtons second law brings these two things together such that in principle

we can calculate the motion. In mechanics we do not ask where the force come from, this

is subject of other topics for example electromagnetism. We only describe its influence

on motion.

All the following topics in physics will more or less base on mechanics, for example ther-

modynamics and fluid dynamics will describe the collective behavior of many particles.

Oscillations and waves describe the motion of a body or many bodies where a linear

force is acting on. And finally electrodynamics describes the interaction of electric and

magnetic field with a body.

Since mechanics contains a lot of subjects we divide it into two parts. In this chapter

we will focus on point-like particles and introduce the main concepts to describe their

motion. In the next chapter we will then look at rigid bodies, which consist of many

atoms, and generalize circular motion including the motion of planets around the sun.

3.1 Model

Any body is built-on a lot of atoms. To precisely describe the motion of that body one

would need to describe the interaction of each atom with each other and also with other

bodies and then compute the motion of each single atom. Obviously this calculation

exceeds any computing power for systems with more than some dozens of atoms. In

order to describe the motion of a body in good approximation we have to figure out a

model.

• A first good approximation is to consider the body as point-like and address col-

lective properties like (total) mass and (total) charge to it. This approximation can

be justified in case the internal structure of the body is small compared to its be-

haviour as entire body. For example if you kick a football its travelling distance is

much larger than its diameter, same holds for planets. Therefore one can in good

approximation describe a football and planets as point-like particles2.

1Other common descriptions are Lagrangian and Hamilton mechanics. They describe interactions by

the potential energy and it is possible to generalize the formalism at the prize it gets more complicated. In

the end the equations one has to solve to get the motion are the same for all description.
2Nevertheless there are effects that appear from their non-zero size. One then has to model it in a more

complicate way.
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• If one considers the distance between the atoms to be constant, one describes that

body as rigid body. This is treated in 4.

• One can also look at the deformation of a body. The description as rigid body is

then not valid any more and one has to go one step further.

3.2 Kinematics of Point-like Particles

As already mentioned above in this whole chapter 3 we will only consider point-like par-

ticles. In this section we will look how one can describe the motion of such a particle.

We are not interested why the particle performs this motion. This we will discuss in the

next section about Newton’s laws.

In this section, first a general description is given which is basically a little repetition of

math. Afterwards we will look at the most important cases.

3.2.1 General Description

Our universe is three dimensional and the whole evolution can be parametrized by the

time. Or in simpler words, the position of any body can be described by a three-dimensional

vector which only depends on time and its starting point. Let’s look at this description

step by step:

First of all we need to define a reference point, often denoted asO. This point is the zero
point in the coordinate system and the coordinates of all bodies refer to this point, see

also figure 3.1. For our coordinate system we need furthermore three coordinate axis. In

principle one is free to choose any point in space as zero point and also the direction of

the axis. Nevertheless it is very often possible to reduce the difficulty of the problem by

a good choice of reference point and direction of axis (see sections 3.2.2 and 3.2.3). In

particular it is useful to take perpendicular axis since then the scalar product of two axis is

always zero. Additionally one should choose the axis such that they obey the right hand

rule (see also 2.1.2). This means if the x-axis points in the direction of the thumb and the
y-axis in the direction of the forefinger then the z-axis should point in the direction of the
middle finger. This right hand rule will get important when we look at vector products

of vectors such as angular momentum or torque. The position of a point-like particle at

time t is given by the position vector ~r(t), namely

~r(t) =

 x(t)
y(t)
z(t)


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where x(t) is the coordinate along the x-axis at the time point t. This means the distance
between the reference point O and the particle is in the direction of the x-axis is x(t).
Note: x(t) is not simply a number, it also contains an unit such as meter or kilometer.
Depending on the unit, the value of x(t) can be different but the distance is always the
same. The same counts for y and z.

~r(t)

~v(t)

x(t)

x

z

y

z(t)

y(t)

0

Figure 3.1: General setup at a time point t: A particle is moving on a (curved) trajectory
through space (from left to the right). The position of the particle is measured with respect

to a reference pointO. The velocity of the particle is the tangent at the curve at the point.

The change of the position vector ~r(t) divided by the time ∆t needed for this change is
the velocity. Assume the particle travels between the time points t1 and t2 from ~r(t1) to
~r(t2). The average velocity is then

~v(t) =
∆~r(t)

∆t
=

~r(t2)− ~r(t1)

t2 − t1
=

 ∆x
∆t
∆y
∆t
∆z
∆t

 .

To get the instantaneous velocity one looks at the limit of very small ∆t which is the
derivative. The instantaneous velocity vector ~v(t) is therefore
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~v(t) =
d~r(t)

dt
=


dx(t)
dt

dy(t)
dt

dz(t)
dt

 =

 vx(t)
vy(t)
vz(t)

 .

Geometrically the instantaneous velocity is the tangent at the curve ~r(t) which points in

the direction of motion and has length v = |~v(t)| =
√
v2x + v2y + v2z , see also figure 3.1.

We can proceed and look at the change of the velocity per time. This means we take the

derivative of the velocity. This quantity is the acceleration, denoted by ~a. Formally we
get

~a(t) =
d~v(t)

dt
=
d2~r(t)

dt2 =


dvx(t)
dt

dvy(t)
dt

dvz(t)
dt

 =

 ax(t)
ay(t)
az(t)

 .

Of course one can also look at higher derivatives but they usually have no physical im-

portance.

3.2.2 Linear Uniform Acceleration

One of the most important non-trivial cases3 is the linear uniform acceleration. This

means ~a is constant. We assume that the acceleration points in the direction of the x-axis
and that the y and z coordinate do not change4.

Obviously we don’t need to describe this motion in three dimensions and we can do the

whole calculation scalar only considering the x-axis. For this assume5 that at time t0, the
particle is at position x0 and moves with velocity v0. We search for the velocity at a (later)
time point t. Since the acceleration is the derivative of the velocity, we obtain the velocity

3Trivial cases would be no acceleration and therefore constant velocity, because then we could make a

change of reference system and our object would be at rest. This is related to the definition of inertial frames,

see section 3.3.2.
4Otherwise we could chose our coordinate system such that the x-axis points in the direction of the

acceleration. Furthermore we could choose the reference point moving with the same velocity in y and z
direction as the particle. Then the y and z coordinate with respect to this moving reference point would
not change. The reason why we can choose a reference point that moves with constant velocity is given in

section 3.3.2.
5We could also choose a reference frame where at the t0 the particle is at rest and at the origin. But to

show how the calculations has to be done, let us consider the more general case.
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by integrating the acceleration and choosing the integration constant such that at t = t0
the velocity is v0. Since the integral from t0 to t = t0 is zero, the integration constant

6 is

exactly v0.

v(t) = v0 +

tˆ

t0

a(t′) dt′

= v0 + a

tˆ

t0

dt′ = v0 + a(t− t0).

Note that the prime of t′ has nothing to do with derivatives. We simply need a variable
to parametrise the integral. We could also replace the t′ by any other sign (e.g. x, α or ℵ)
as it does not appear outside the integral. The position of the particle is obtained by one

more integration. With the same argumentation the integration constant is x0.

x(t) = x0 +

tˆ

t0

v(t′) dt′

= x0 +

tˆ

t0

(
v0 + a(t′ − t0)

)
dt′

= x0 + v0(t− t0) +
1

2
a(t− t0)

2.

The calculation is graphically drawn in figure 3.2.

It is important to remember that the displacement (with a constant) is proportional to the
square of time (for t0 = 0). One intuitive explanation for this square dependence is that
the mean velocity is proportional to the time t and that the time of flight is proportional
to t. Therefore the distance is proportional to t2, see again figure 3.2.

If the acceleration is linear (the vector ~a(t) points always in the same direction) but not
uniform (~a(t) not constant), we can treat the problem also in one dimension but we have
to calculate the integral for the function ~a(t).

6It’s not always that simple to find the integration constant. For example if the velocity v0 is not given
at t0 but at t0 − 1s.
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t0 t t0 t t0 t

time time time

a v x

v x
v0

x0

a=const

Figure 3.2: Connection between the acceleration a, the velocity v and the distance x (here
fore the linear uniform acceleration). Left: graph of the acceleration, which is constant

(since uniform acceleration). The area under the graph (shaded) from t0 to t corresponds
to the velocity v − v0 at time t which grows linearly. Middle: Graph of the velocity.
The area corresponds to the distance x− x0. Right: Graph of the distance which grows

quadratically.

Example:
x

1

2

3

x0 = 4

Figure 3.3: Schematic drawing of the example.

Let’s calculate a concrete case namely the motion of a ball when dropping it from

the second floor of a house. Since in the gravitational field on earth, all bodies are

accelerated with the same7 vertical acceleration8 g = −9.81m·s−2 we encounter the
case of linear uniform acceleration. Take the coordinate axis to point upwards9 and
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the zero-point on the ground, see also picture 3.3. Assume the window in the second

floor of the house has a height of 4m and we let the ball drop at t = 0. Then its
velocity until it hits the ground is v = gt = −9.81t. The velocity is negative as
expected as the x coordinate of the ball gets smaller and smaller (from initially 4m
towards 0). The position is then

x(t) = x0 +

tˆ

t0

v(t′) dt′

= x0 +

tˆ

t0

(
v0 + at′

)
dt′, v0 = 0

= 4m− 1

2
9.81m·s−2t2.

To get the time the ball needs to reach the ground we have to set x(t) = 0 and solve
for t leading to

t =

√
2 · 4m

9.81m·s−2
≈ 0.28s

3.2.3 Circular Motion

After we discussed the kinematic problemswhich can be solved in one dimension lets now

look at the simplest problem which needs two dimensions. This is the circular motion.

In this case the particle flies on a circle in a plane, see 3.4. Since the particle always moves

on the circle we can parametrize it by an angle ϕ(t).

x = R cos(ϕ)

y = R sin(ϕ).

If the angle changes with a constant rate we call this motion uniform circular motion.

The rate of change is described by the angular velocity ω = dϕ
dt (being constant). This

leads then to an angle ϕ(t) = ωt+ ϕ0. The velocity is given by
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~r(t)

R cos(ϕ)

R sin(ϕ)
ϕ(t)

x

y

ϕ0

ωt

v(t)

O

Figure 3.4: Situation for the circular motion: A particle moves on a circle with radius R.
Its position is described by the angle ϕ.

vx =
dx(t)

dt
=
dR cos(ωt+ ϕ0)

dt
= −Rω sin(ωt+ ϕ0)

vy =
dy(t)

dt
=
dR sin(ωt+ ϕ0)

dt
= Rω cos(ωt+ ϕ0).

The velocity is obviously perpendicular to the position vector ~r. This is related to the
constriction of the motion on the circle where |~r| is constant. To see this relation, assume
the velocity would not be perpendicular to the position. Then there is a component

of the velocity pointing in the direction of the position which means that the position

vector would get longer or smaller. The position vector would then leave the circle which

contradicts to |~r| being constant. The general motion in two dimensions will be discussed
in the next section 3.2.4. Let’s come back to the circular motion and calculate the absolute

value of ~v:
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|~v| =
√

v2x + v2y = Rω
√
cos(ωt+ ϕ0)2 + sin(ωt+ ϕ0)2 = Rω.

Similar to the position vector the velocity vector only changes its direction and not its

absolute value. We therefore can repeat all the steps above to calculate the acceleration

which is then given by

ax =
dvx(t)

dt
=

−dR sin(ωt+ ϕ)

dt
= −Rω2 cos(ωt+ ϕ)

ay =
dvy(t)

dt
=
dR cos(ωt+ ϕ)

dt
= −Rω2 sin(ωt+ ϕ).

From the discussion above the acceleration was expected to be perpendicular to the ve-

locity and since we are in two dimensions it must be parallel to the position. But position

and acceleration point in the opposite direction or in mathematical language ~r · ~a < 0.
This means ~a points towards the origin O of the circular motion.

3.2.4 General 2 Dimensional Motion

We now look at the motion in two dimension, as this occurs in many situations. Examples

for motion in two dimensions are ball rolling on plane, a car driving on a street or the

trajectory of a flying object with gravitational force.

Consider the following situation: A point-like particle moves on a plane. At the time t
the particle shall be at the position10 ~r(t) and moving with a velocity ~v(t) and accelerated
with an acceleration ~a(t). The question is, what the relation between these quantities is.
Formally the relation is the one described in section 3.2.1 but there is a more intuitive

approach. For this let’s first look at the relation between acceleration ~a(t) and velocity
~v(t). The acceleration describes the change of the velocity. We split the acceleration
into the part parallel to the velocity, denoted by ~a‖(t), and the part perpendicular to the
velocity, denoted by ~a⊥(t), see also figure 3.5. From the discussion in the section about

circular motion (see 3.2.3), it is obvious that ~a⊥(t) only changes the direction of ~v(t)
but not its length. On the other hand ~a‖(t) only changes the length of ~v(t) but not its
direction. Similarly we can argue concerning the relation between the position ~r(t) and
the velocity ~v(t).
It might seem that this intuitive approach does not lead to a lot of insight. But for example

considering the motion of planets around the sun and in particular their non circular but

elliptic motion can intuitively be explained with this argument.

10All vectors in this section shall be two dimensional vectors on the plane.
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~v(t)

~a‖(t)
~a⊥(t)

~a(t)

Figure 3.5: The acceleration pointing in an arbitrary direction is split into its components

parallel and perpendicular to the velocity.

3.3 Dynamics of Point-like Particles

In the last chapter we discussed how one can describe the motion of a particle. But we did

not ask what makes the particle move on that trajectory. To do this we now proceed to

the description of the interaction between bodies and how the interaction is connected

to the motion, i.e. what forces the particle to move the way it does. We will describe

the interaction by forces11. The relation to the motion is then described by Newton’s

laws. After this rather general part we look at the most important forces and how one

can categorize forces.

3.3.1 Force

Although the concept of a force is very important in this chapter and one might have

an intuition from everyday live it’s not that easy to precisely define what is meant by a

force in physics. It is rather the relation to other (maybe more intuitive) quantities that

defines a force. For the moment let us define the force as (mechanical) resistance a body

opposes. For example if someone wants to deform a body one needs to apply a force.

Or if one wants to change the velocity one needs to apply a force which leads then to the

11One could also describe the interaction by the interaction energy which is done in Lagrangian and

Hamiltonian mechanics.
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acceleration (see Newtons second law). On the other hand these two examples allow us

to measure a force: For example if a body gets deformed, we know that a force is acting

on it. Or if an object accelerates we know a force is causing this acceleration12. Since

the resistance as described above might be different in different directions of space it is

obvious that the force in general is a vector.

3.3.2 Choice of Frame of Reference

Until now we simply took a frame of reference (usually a suitable) without thinking about

its consequences to the laws of physics. To be more precise until now (meaning the

kinematic part) we actually did not do physics because we only defined different quantities.

This definitions are in principle math and physics comes in when we connect different

definition such as force and acceleration13. Depending on the choice of the frame of

reference the laws of physics might look different.

An example is driving a curve with a car: In the frame of the driver the car and he/she does

not move,therefore his/her velocity is always zero and hence also his/her acceleration.

Nevertheless he/she feels a force in a curve without acceleration. For a person standing

on the road this force is needed in order to accelerate the car such that it can take the

curve (details see 4.1.3). So in both frames we have a force but only in one there is an

acceleration.

There is a very special class of reference frames in which Physics takes the simplest form.

These reference frames are called inertial frames of reference. They are characterized by

Newton’s first law. Most of the laws of physics are only valid in inertial frames. We

will have a look at non-inertial frames in section 4.1.3. Let’s now proceed and look at

Newton’s laws:

12This statement is not as easy as it sounds because it depends on the choice of reference frame (see 3.3.2).

It might lead to fictitious forces if one does not choose an inertial frame.
13The relation between position and velocity and acceleration is also math because we gave the different

derivatives of the position new names. The force is a completely independent concept and needs to be

related to the kinematic properties.
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3.3.3 Newton’s Laws

The tree laws that connect the description of motion (position, velocity, acceleration) and

the one of interaction (force, interaction energy) are Newton’s laws (see also picture 3.6)

1. A body where no force acts on, remains in constant velocity14.

2. The total force acting on a body causes an acceleration proportional to its massm:

~a =
~F
m .

3. If body A acts with a force ~F on body B, body B acts with a force −~F on A.

Here we introduced the first time the massm. This is a property of the body which tells
you how inert it is or using the terminology of the definition of the force: The mass tells

you haw big the resistance of a body is, if a force acts on it15.

~F = 0 ⇒ ~a = 0

~F

~a

~FAB
~FBA

~FAB = − ~FBA

~v = const

~v

Figure 3.6: Newton’s laws as pictures: Left: Newton’s first law: If no force acts, a particle

moves with constant velocity. Middle: Newton’s second law: Force is equal to mass times

acceleration. Right: Newton’s third law: The force acting from a particle to the other is

equal to minus the force acting from the other to the one.

The laws stated above contain a lot of information that needs to be discussed:

As already mentioned in section 3.3.2, the first law gives a definition for an inertial frame.

To be more precise: A reference frame is an inertial frame if and only if any body on

which no (total) force acts, does not move or moves with constant velocity. Returning

to the example of the car driving a curve we observe that the car is not an inertial frame:

For this we only look at the motion on the plane where the car is driving and do not take

14Including the case where it remains in rest.
15Be aware that defining the mass this way, the gravitational property of a mass is not included. In fact the

two properties ”resistance ” and ”two masses attract each other” are à priori two independent properties. A

body could have these two properties independently so a ”resistive mass” and an ”attractive mass”. These

two properties get unified in terms of general relativity.
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into account the vertical gravitational force. A body that is not attached at the car will

then be acceleration in the frame of the car although there is no force acting on it16. In

the frame of the road, that body will simply move straight forward as we would expect it

from a body on which no force acts.

The second law is the most important one because it answers the question how a body

behaves if a force is acting on it. One might think that the first law is contained in the

second one. This is only partially true, because the second law is only valid in inertial

frames. Therefore if we want to link the motion and the forces (as given in the second

law) we first have to ensure we have an inertial frame and for this we need the first

law. If multiple forces act on a body one has to sum them up (as vector) to get the

total force. According the the second law, the total force is then equal to ~Ftot = m~a.
Or to be more clear: If multiple forces act on a body such that they cancel each other,

that body will not be accelerated. In principle you can solve all the problems simply by

summing up all forces, calculate the acceleration and then the path. But in general the

force depends on the position or the velocity of the body and you end up in complicated

differential equations. One can often avoid this difficult way and get the result easier

using conservation laws and some tricks.

The third law is in one to one correspondence to the conservation of momentum. We

will look at this closer in section 3.4.1. The third law might sound contradictory to the

second law. Because if a body A acts with a force ~F on B and B with a force −~F on

A, the total force is zero. And indeed, the total system composed of A and B will not

accelerate (meaning the center of mass will not accelerate, see also 3.3.4). But as long as

there is nothing that inhibits the two bodies to accelerate (for example a rod between the

two bodies) the total force on each body is non zero and both will accelerate17. If there is

for example a rod separating the two bodies, one has also to take into account the forces

of the rod acting on each particle. In this case the total force on each body is in fact zero.

The second law of Newton can be formulated in a more general way18 as

dm~v

dt
= ~F (3.1)

16This might sound contradictory to the statement in section 3.3.2 were we stated that in both frames a

force is acting. But there we looked at the driver and the driver is attached to the car and therefore a force

is needed in order to make the curve (otherwise the driver would leave the car).
17They accelerate such that the total momentum is conserved. Or equivalently the center of mass is not

accelerating. This is ensured by the third law.
18Newton already stated it in that way.
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where the first termm~v is the momentum (see section 3.4.1). If the massm is constant,

we can take it out of the derivative and we get the formula above. In most cases one can

use the simpler version of Newton’s second law.

3.3.4 Center of Mass

Consider a body consisting ofN point-like particles, see figure 3.7. Assume these particles

interact with each other such that there is a force between each pair of particle (in case two

particle do not interact, their force is zero). In addition assume there is an additional force

acting on all particles. Let us enumerate all the particles and focus on one particular with

the number i. We can split the total force acting on this particle into the contributions of
all other particles and the external force ~Fi,ext

1
2

3

~F23

~F32

~F12
~F21

~F31

~F13

~F3,ext

~F2,ext
~F1,ext

Figure 3.7: Body consisting of three particles. The forces acting on each particle are

drawn.

Formally we get

~Fi =
∑
j 6=i

~Fji + ~Fi,ext

where ~Fji is the force
19 acting form a particle j 6= i on i. The total force acting on the

entire body is given by the sum of all forces acting on all particles

~Ftot =
∑
i

~Fi =
∑
i

∑
j 6=i

~Fji + ~Fi,ext

 .

19In some literature the indices i and j are swapped. So ~Fji is the force from i on j

83



3 Mechanics 1

The first term (the sum over all forces ~Fji) is called internal force and the second therm

(sum over all external forces) is called external force. According to Newton’s third law,

the force acting from particle i on particle j is opposite the one from j on i. As a
consequence the sum over all ~Fji vanishes and the total force acting on the body is only

~Ftot =
∑
i

~Fi,ext.

According to Newtons second law, the total force acting on a particle i is equal to the

acceleration d2~ri
dt2

time its massmi which leads to

~Ftot =
∑
i

~Fi,ext =
∑
i

mi
d2~ri
dt2

= M
d2

dt2

∑
imi~ri
M

(3.2)

where M =
∑

imi is the total mass. This is a very useful statement because it means

that the motion of the entire body can be described as if it were a point-like particle at

the position

~RC =

∑
imi~ri
M

.

The position ~RC is called center of mass. Equation (3.2) can then be written as

~Ftot = M
d2 ~RC

dt2

which is exactly the equation of motion of a point-like particle at position ~RC . This is

especially remarcable since we do not have to know anything about the internal forces,

we can completely neglect them. Be aware that the center of mass ~RC only describes

the motion of the entire body and not internal motion as rotations or oscillations of its

constituents. In case of a rigid body have also a look at 4.2
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3.3.5 Equilibrium

In different topics of physics we will encounter equilibriums. In general an equilibrium is

a state which does not change with time. Usually they are easier to calculate than a general

state where an explicit time dependence needs to be calculated.

A body is in a mechanical equilibrium if it remains in rest or moves with constant speed.

We focus on resting bodies. If a body remains in rest, its velocity and acceleration is zero.

Due to Newton, the total force acting on a body must therefore also be zero. There are

three possibilities how this can happen, see also figure 3.8.

Figure 3.8: Examples of stable, unstable and indifferent equilibriums. On top, the case

for a ball rolling on a surface is drawn. On the bottom, a rod is suspended at the white

point.

Stable

The body is in a (local) minimum of energy. If it is displaced slightly, a force pushes it back

towards the minimum, it returns to its position of equilibrium. See also the two examples

in figure 3.8. For small displacements, the restoring force is in most cases proportional

to the displacement. If slightly displaced, the Body then performs a harmonic oscillation,

see also 6.2.
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Unstable

In this case the body is energetically in a (local) maximum. A small displacement causes

the body to be pushed away from the initial position. Examples are shown in the middle

of figure 3.8. If the body is placed exactly at the maximum of the energy then the total

force vanishes also.

Indifferent

A third interesting case is the indifferent equilibrium. If the body is slightly displaces,

there is no force acting at all. See also the right part of figure 3.8.

3.3.6 Gravitational Force

One of the most important forces is gravity. According to Newton’s laws, a mass has the

property that it opposes the change of velocity. Or in other words, a mass is inert. But

masses have also an other property, they attract each other.

Consider two masses m1 and m2 separated by a distance r. Then the attractive force
20

between the two masses is given by

F =
Gm1m2

r2

where G = 6.67 · 10−11m3·kg−1·s−2 is the gravitational constant. Obviously the force
is proportional to each of the two masses. This has a very important implication: If the

only force acting on a body is gravity, then its motion is independent of its mass. To see

this assume we double the mass of a body. Then its force is also doubled. To get the

acceleration of that body we have to divide the force by its mass. And there the factor

two cancels out21.

Like in electromagnetism, we can define a field strength of a gravitational field. This field

strength is called gravitational acceleration22. The field strength is the quotient of the

force divided by the mass of one body. For example if we look at the earth with mass

M , the gravitational acceleration at the surface of the earth is given by

20Since the form of this formula is highly related to the electric force of two point charges, further prop-

erties in case of the electric field can be found in chapter 9.1
21Although in electromagnetism, the force for point-like charges looks basically the same. But since the

force is proportional to the charge q, only bodies with same quotient e
m
have equal motion.

22This terminology is a bit unfortunate. Because one should think of a field strength and not an accelera-

tion. The gravitational acceleration corresponds to the electric field (strength) in electromagnetism.
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g =
GM

r2
≈ 9.81m·s−2

where for the numerical value we took the radius of the earth23. This means that a body

with massm is attracted by the massM with a force F = mg.
Looking how gravity looks vectorial, we have to take into account that two masses attract

each other. Denoting ~r as the vector pointing from massM to massm (see figure 3.9),

the force acting on massm is given by

M m

~r

~F

Figure 3.9: Two masses attract each other. The bit arrow denotes the position ~r of m
with respect toM and the small arrow denotes the gravitational force acting onm.

~Fgrav = −GMm

|~r|2
~e~r = −GMm

|~r|3
~r

where ~e~r = ~r
|~r| is the unit vector along ~r. The minus sign is important as it represents

the fact that two masses attract each other.

3.3.7 Independence of Motion

In many cases it is useful to split the three dimensional movement in its x, y and z
coordinate and calculate the motion along each coordinate separately.

Example Let’s look at the case of a projectile motion where after we shoot a body (with

massm), the only force acting is the gravitational force. Shooting it at time t = 0 with an
initial velocity v at an angle of α (see figure 3.10), the horizontal ~vx and vertical velocity
~vy are

~vx = cos(α)v~ex

~vy = sin(α)v~ey

23The earth is obviously not a point-like particle and to use the formula for point-like particles need to be

justified. The proof that this is valid is the same as in case of the static electric field, we refer the reader to

9.1
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Putting the origin to the place, where we shoot the body, leads to ~r(t = 0) = 0. We now
can calculate the motion along the different axis independently (for t > 0).

x

y

~v0

α

vy = v0 sin(α)

vx = v0 cos(α)

Figure 3.10: Projectile motion.

• As there is no initial velocity in the z direction and no force acts in the z direction,
the z component will not change. So we have z(t) = 0.

• Along the x axis, there is no force acting, so no acceleration. But we have an initial
velocity so we get a linearly growing x component. x(t) = vxt where vx = |~vx|.

• In y direction we have the gravitational force acting as well as an initial velocity.
Therefore we can use the linear uniform acceleration from section 3.2.2 with t0 =
0, x0 = 0 , v0 = vy = |~vy| and a = −g < 0 where the g > 0 is due to the
gravity pointing in opposite direction than the y axis. We then have the motion
y(t) = vyt+

g
2 t

2

Due to this splitting we were able to simplify this 3 dimensional motion into the known
motion in one dimension. We can even go a step further and calculate the y component
as a function of the x component meaning that for each point along the x axis we know
the height of the body. For this we solve t for x and get t = x

vh
and substitute it into the

function for the y component:

y(x) = vyt(x)−
g

2
t(x)2 = vy

x

vx
− g

2

(
x

vx

)2

=
vy

vx
x

g

2v2x
x2
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3.3.8 Volume and Surface Forces

There are two conceptually different ways a force can act on a body. On one hand a force

can act on the entire body or only on its surface. Correspondingly one calls these forces

volume and surface force. Obviously these concepts do not hold for point-like particles

since they have no volume and no surface24

In case of the volume force, the force acts on the entire body. It is not necessary that it

acts on the entire body the same. Examples of volume forces are gravity, magnetic field

or electric field in case of insulators25.

This is different to surface forces where the force only acts on the surface of the body.

Examples of these are pressure and friction. One can even split up the surface forces

in normal and tangent forces. A normal force acts perpendicular on the surface. For

example if a stone is placed on a horizontal table, the table opposes the gravitational force

of the stone by pushing it up. This up-pushing force only acts on the surface touching

the stone and nowhere else. Since gravity acts vertically, the force between the table and

the stone is also vertical and therefore perpendicular to the surface. This is different in

case of a tangent force which is acting parallel to the surface. For example if the stone is

pushed over the table, there is friction which acts parallel to the surface. For more details,

see also the next section.

3.3.9 Friction

A exact description of friction (including fluid resistance) is pretty difficult. Nevertheless

there are different models where we will lock at the simplest one.

This model states that the friction of a (moving) body is proportional to its normal force,

see also figure 3.11. The proportionality constant is called coefficient of friction µ. One
can distinguish three different types of friction, static friction, dynamic friction and rolling

resistance. Each of these three types has its own coefficient.

Static friction happens if two bodies are placed one onto the other but do not move. For

example a stone on a table. As long as a horizontal force is smaller than the static friction,

the stone does not move. This maximal static friction is given by Fs = µsFN where µs is

the static friction coefficient and FN is the normal force of the stone, e.g. its gravitational

force FN = mg.

24In fact these concepts make only sense in terms of bodies which consist of a lot of particles and we can

describe them as continuum.
25In case of conductors in an electric field, the charge is distributed on the surface of the body. See also

9.2.5.
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FN

F Ff

Figure 3.11: Body on a plane surface (e.g. table) is pulled with a force F . The friction Ff

is proportional to the force that pushes the body on the surface FN .

Be aware that this is only the maximal horizontal force one can apply before the stone

starts sliding. If one applies a force F < Fs, the friction is equal to F and not Fs
26.

If the force is bigger than the static friction or if the body is already sliding, dynamic

friction happens. This means the friction is Fd = µdFN where µd ≤ µs is the dynamic

friction coefficient. In our example, the stone slides with a constant speed if the applied

force is equal to the dynamical friction F = Fd. If the applied force is bigger, the stone

accelerates with an acceleration a = 1
m(F − Fd).

Instead of sliding, a body could also roll. In this case one calls the ”friction” rolling

resistance. One can also assign a coefficient µr to this resistance. For well-formed bodies

(as cylinders or spheres), the rolling resistance is much smaller than dynamic friction. Be

aware that rolling resistance is highly related to static friction. Because in case of rolling

resistance, at each instance one point of the body is not moving (the one touching the

table). This point is the subject to static friction. For better understanding imagine driving

a bike. If you brake it is not the rolling resistance that allows you to brake: As long as the

wheel is still turning, your braking force is limited by the static force between the ground

and the wheel. If you brake harder, you overcome the static force and you start sliding.

This is worse because the dynamic friction is smaller than the static one and you brake

slower (smaller acceleration). That is the reason most cars have ABS: At an emergency

braking, the board computer regulates the braking such that it never blocks the wheels,

they always brake with static friction and not dynamic friction.

26Otherwise the total horizontal force would not vanish and the stone should accelerate horizontally.
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3.4 Momentum, Work, Energy and Power

In principle one can always proceed as described in the previous sections. These equa-

tions of motion are very often too difficult to calculate. This does not mean we cannot

say anything about the behaviour of complicated system. We can will use conserved

quantities, as Momentum and Energy, which we treat in this chapter.

3.4.1 Momentum

The momentum already appeared in the most general formulation of Newton’s second

law (see equation (3.1)). It is defined as ~p = m~v. As long as no force is acting, the time
derivative of the momentum is zero, meaning momentum is conserved/constant. Or in

other words, momentum is only changing if a force acts. The change of momentum∆~p
is then given by

∆~p = ~p(t2)− ~p(t1) =

ˆ t2

t1

F (t)dt.

3.4.2 Work

The concept of work is pretty important in physics as it connects energy and force.

Roughly speaking, work is one possibility to convert one form of energy into another.

For example if someone drops something, e.g. a stone, it gets accelerated and the poten-

tial energy converts into kinetic energy (see also sections below). This transformation of

energy happens due to the gravitational force acting along the path of the stone.

For a constant force F always pointing in the direction of movement, the work W is

defined as

∆W = F∆s

where s is the length of the considered path. The unit of work is newton meter (N·m) or
Joule (J) or watt seconds (W·s). For example dropping a stone of 1kg from a height of

2m., the work done by gravity isW = Fs = 1kg · 9.81m·s−2 · 2m = 19.62J.

In case the force points perpendicular to the direction of motion, no work is done. Intu-

itively this can be seen in case of circular motion, where no energy is applied but a force

acts radially and therefore perpendicular to the movement. Or in case of gravity: Moving

our stone horizontally does not change its potential energy, so there is no work done by
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gravity27. In general we can split up the force in the component parallel and perpendicu-

lar to the motion, see also figure 3.12. Then only the component parallel does contribute

to the work. This is achieved by taking the scalar product of force and path

∆W = ~F ·∆~s

~F

~Fs⊥

~F‖ ∆~s

Figure 3.12: A body is elevated along ∆~s (only vertical movement) by a force ~F . Only

the component ~F ‖ along ~s contributes to the work ∆W = ~F‖∆~s = ~F ·∆~s.

In general the force might not be constant along the path and the path not a straight

line. Then the calculation can get pretty tedious28. In this general case we split up the

path in small pieces∆~s where we can assume the force ~F to be constant and the piece a

straight line. Then we calculate the work done on this small piece and sum all this work

up. The limit for the splitting into pieces of very small pieces (length going toward zero)

is mathematically an integral. In this integral we integrate (=sum) the small work pieces

dW = ~F · d~s which leads then to the formula

∆W =

~s+∆~sˆ

~s

~F · d~s.

27Although one might need to apply work in order to move the stone for example in case pushing it over

a table where friction occurs. Then the work is only the friction times the path length.
28In most cases the general calculation is not needed but it is important to understand what this general

formula (intuitively) means.
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3.4.3 Energy

The definition of energy is the ability to perform work. This means if we want to perform

work, we must apply some kind of energy which is then transferred (by the work) to

another kind of energy. Energy is also a conserved quantity. Nevertheless there exist

a lot of different forms of energy. The conservation of energy is stated as first law of

thermodynamics29. In order to apply the conservation one needs to consider all kinds of

energy which makes it in some cases less applicable than momentum.

3.4.4 Potential Energy

If a force acts between two bodies, in some cases it is possible to attribute a potential

energy. Since this is in general a bit tricky, we will first have a look at an easy case and

then generalize.

The easiest case is the one of a homogeneous field, e.g. the gravitational field on earth30.

We choose the coordinate system such that the z-axis points vertically up (see also figure
3.13). The force on a body with mass m is then ~Fgrav = −gm~ez . If we lift a body

vertically we have to apply a force ~Fe = −~Fgrav. Lifting it up by vertical distance s, we

have to apply the work W = |~Fe|s = ~Fe · s~ez = −~Fgrav · s~ez > 0. If we take the
xy plane as reference, we can denote for each height z an energy we have to apply. This
energy is called potential energy Epot and is given by

Epot = −~Fgrav · ~r = |~Fgrav|z

where ~r is the vector pointing at a certain position (see also figure 3.13). We therefore
managed to attribute a gravitational energy for every point in space. Knowing the poten-

tial energy, we can also go back to the force by taking the derivative

~Fgrav = −
dEpot

dz
~ez.

Here we used, that we already know the direction of the force. A general expression is

given in the next paragraph, where we look at general potentials.

29In Newtonian mechanics this cannot be proven. But in Lagrangian mechanics this is associated to

the assumption that physics is independent of time, meaning the laws of physics are true yesterday, today,

tomorrow and at any other time.
30Here we only look near the surface of the earth such that earth looks like a plane.
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For the general case we consider two bodies denoted by their masses M and m which

interact which each other. This interaction leads to a force ~F~r between them where

~r denotes the distance from M to m, see also picture 3.14. In some cases31, we can
attribute a potential energy to this configuration. If this is possible, we can proceed as

follows. We chose a reference point ~r0 where we attribute the energy Epot = 0. The
choice of this reference point is arbitrary, due to equation (3.5). Then we calculate the

workW that needs to be done to move32 m from ~r0 to ~r. The potential energy is then

Epot(~r) = W (~r0 → ~r) = −
~rˆ

~r0

~F · d~s (3.3)

where theminus sign takes into account that we have to apply the external force ~Fe = −F
in order to move the bodym.

This definition of the potential energy is only meaning full if it does not depend on the

path from ~r0 to ~r. In particular this means we can go from point ~r0 to ~r and back (by a
different path) and gain no energy. This leads to the constraint the interaction between

the two bodies have to fulfil in order to describe it by a potential energy: The work we

have to apply for a closed path must be zero or as formula

W =

˛
~Fe · d~s = 0 (3.4)

where the circle in the integral symbolizes that we take a closed path. Such an interaction is

associated to a (so called) conservative field, further information see in the section about

electromagnetism, chapter 9.2. Not all interactions fulfil this constraint, for example

friction or many time-varying fields as for example a time dependent magnetic field33.

If we can describe an interaction with a potential energy, many calculations simplify. For

example we can easily calculate the energy between two points34 ~r1 and ~r2 we can simply
take the potential energy at ~r2 and subtract the one from ~r1

31The condition to succeed is given in equation (3.4).
32We could also move M which yields the same result. But since ~r points to m it is more intuitive to

movem.
33This is used in a transformer, where the electrons ”flying” around a varying magnetic field gain energy,

meaning a voltage builds up.
34The difference to the calculation before is that no one of these points must be the reference point ~r0.
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∆Epot = −
~r2ˆ

~r1

~F · d~s = −
~r2ˆ

~r0

~F · d~s−

−
~r1ˆ

~r0

~F · d~s

 = Epot(~r2)− Epot(~r1).

(3.5)

On the other hand if the potential energy of an interaction is given, we can also go back

to the force35. Similar to the example above with the homogeneous gravitational field,

we can apply some derivative on the potential energy. This is also clear from an analytic

point of view: The potential energy is the integral from the force, and the ”inverse” of the

integral is the derivative. So applying an appropriate derivative on the potential energy

should give back the force. Indeed we can get the force by

~F (~r) = −

 ∂
∂x
∂
∂y
∂
∂z

Epot(~r)

where these curly derivative signs ∂ are the usual derivatives but indicate that the potential
energy not only depends on one parameter but on x, y, and z. The minus sign is there
because of the same reason as in the definition of the potential energy, see equation (3.3).

3.4.5 Kinetic Energy

Taking a bouncy ball and let it fall, it bounces up again. When flying up, it gains po-

tential energy and in particular work is done in order to bring it up again. Hence there

must be another kind of energy which allows the ball to get potential energy again. This

other energy is the kinetic energy (neglecting elastic energy when it bounces). In order to

calculate the kinetic energy, we make use of the conservation of energy. This means the

potential energy lost must be converted into kinetic energy. When the ball falls for a time

t (starting from rest), it passes a distance h = 1
2gt

2 and loses the potential energy mgh
The same energy must then be gained as kinetic energy. Therefore the kinetic energy is

35Since this includes more advanced math, you do not need to know this for the exams.
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Ekin = mgh

=
1

2
mg2t2, gt = v

=
1

2
mv2 =

1

2
pv

where v is the final velocity of the ball.

A 2 times bigger velocity leads to four times more kinetic energy This is clear because
to double the velocity one need double as many time and therefore a four time longer

distance. As a consequence one converts four time more potential energy into kinetic

energy.

3.4.6 Power

An other interesting quantity is the amount of work per time, which is called power P .
If during a period of time T the work is constant W , the power is simply P = ∆W

∆T .

Therefore if one needs longer for the same work his power is smaller and vice versa.

Similar to the discussion about mean velocity and instantaneous velocity in section 3.2.1,

we can look at mean and instantaneous power. The instantaneous power is defined as

P (t) =
dW

dt
.

This instantaneous power describes how much work per second is done at a certain time.

To get the mean power we choose a slightly different approach, which is more common

in terms of power and work. Lets calculate the mean power between t1 and t2. For this
we average the instantaneous power. Intuitively speaking we split the time T = t2 − t1
into N small pieces and consider the power being constant during each piece. Then we

sum all these pieces up and divide by the total number of pieces. LettingN going towards

infinity we end up by an integral
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P ≈ 1

N

N∑
j=1

P (t1 +
Tj

N
)

=

N∑
j=1

P (t1 +
Tj
N )

N
T

1

T

→ 1

T

t2ˆ

t1

P (t) dt = P

where we used T
N → dt for N going towards infinity. The unit of Power is Watt which

is one joule per second. Using this, the unit of energy is sometimes written as kW·h,
1kW·h = 3.6MJ which is the work done by the power of one Watt during one hour.

If you’re not used thinking in terms of work and power, you might mix them (as many

politicians and journalists do). For example a light bulb has a power of 40W, this means
each second it converts 40J electric energy in light and heat. If the bulb shines one hour
it has ”worked” (not mechanical work) 40W · 3600s = 144000J which is of course an
energy.

Other example: A house need (let’s say) 7500kW·h per Year. This is a power, because
you have energy per year which is equivalent to work per time.

3.4.7 Rotation Energy

One other form of mechanical energy is the rotation energy. Consider a rotating body

consisting of (multiple) mass point(s)mi. Then the rotation energy is given by the kinetic

energy of all the mass points

Erot =
∑
i

Ekin,i =
∑
i

1

2
v2imi = ω2

∑
i

1

2
r2imi =

1

2
ω2I

where ω is the angular frequency and we used that the velocity36 vi = ωri and I =∑
i r

2
imi is the moment of inertia. We will have a closer look to rotating bodies in the

next chapter 4.

36In scalar form. For the vector form we would need the vector product, see also 2.1.2.
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Example:

Someone is driving with a bike with total mass M = 80kg with a velocity v =
10m·s−1 then the kinetic energy is Ekin =

1
2Mv2 = 4000J. Additionally the wheels

are rotating, meaning they have additionally rotation energy. Assuming (two) cylin-

drical wheels with massm = 0.6kg and radius R = 0.5m, the momentum of inertia

is I = mR2 = 0.15kg·m2. Using ω = v
R = 20s−1 we get a rotational energy

Erot = 2 · 1
2ω

2I = 60J. The total energy is therefore Etot = 4060J.

3.4.8 Angular Momentum

In terms of conservation laws one should clearly mention the angular momentum which

we will also investigate more precisely in the next chapter. Nevertheless the most impor-

tant formulas shall be given already now.

For a point like particle at position ~r and mass m the angular momentum L is defined

as37

L = rmv⊥

where v⊥ is the velocity component perpendicular to ~r and r = |~r| is the absolute value
of the position. For symmetric bodies consisting of many particles, we can use the mo-

mentum of inertia introduced in section 3.4.7 and we get

L = Iω.

37In fact the angular momentum is a vector quantity. For simplicity we only give the scalar form.
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~Fgrav

~Fe

~Fgrav

~Fe
s

z

xy plane

~r

Figure 3.13: A body in the gravitational field is lifted from ground to a coordinate z. The

work isW (z) = |~Fgrav|z. This means the work done is stored as potential energy. With
the reference point Epot(z = 0) we get Epot(z) = W (z) = |~Fgrav|z
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M

m

~r

~r0

Epot(~r0) = 0

Epot(~r)

Figure 3.14: Two bodies with mass M and m interact with each other. The potential

energy at ~r is equal to the work that needs to be applied to m when moving it from the

reference point~r0 to ~r.
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After we got familiar with the basic concepts of mechanics (see chapter 3) we now want to

apply these concepts for more advanced topics and examples. Namely we will introduce

a more general notation and description for rotations and discuss related topics such as

fictitious forces and rigid bodies. Finally we will make a little excursion to the motion of

planets and in particular to Kepler’s laws.

4.1 Rotations

Since most of this chapter is about rotational motion it is important to have a reliable

mathematical description. This will be important to precisely describe and calculate ef-

fects appearing from rotations1. In particular we will introduce the angular-velocity and

redefine all the rotational quantities using this vectorial notation. In the end we will have

a look at rotating frames and the appearance of fictitious forces.

4.1.1 Angle and Angular Velocity as Vectors

When we started with kinematics, we started with the position of a point-like particle and

continued with the velocity and acceleration. The corresponding quantities for rotations

are the angle φ, the angular velocity ω and the angular acceleration α. Since the angle
is only defined up to a 360◦ (or equivalently 2π in radians), it is less important than the
angular velocity. Hence it is more intuitive to start with the angular velocity and then

define the angle.

Assume a body (for example a point-like particle) is performing a circular motion around

a given axis, see also figure 4.1. In addition we want to assume that the time T for one

round trip is constant, meaning we have a constant angular velocity ω = 2π/T . The
motion of the body hast three important properties

• The body moves in a plane perpendicular to the axis. Therefore the velocity (as

vector) lies in this plane.

• As we assumed the frequency to be constant, its speed is proportional to the dis-

tance of the body to the axis r⊥.

• The speed is proportional to the frequency ω.

1Rotational motion can be quite unintuitive that’s why we need a reliable mathematical formalism
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perpendicular plane

~ω

r⊥

~v

Figure 4.1: A body (black dot) is rotating around an arbitrary axis ω. Its motion happens
in a plane perpendicular to that axis.

These tree properties can be merged in one formula for which we need to define the

angular velocity vector ~ω: It points in the direction of the axis and its length is equal to
the absolute value of ω = |~ω|. The direction of ~ω is such that if we take the right hand
and if the thumb points in the direction of ~ω, the velocity ~v points in the direction of the
other finger. Using this definition and assuming the center of the coordinate system is

on the rotation axis, the velocity ~v is related to the angular velocity by

~v = ~ω × ~r

where ~r is the position vector of the body pointing from the center of the rotation to the

body itself. The vector product ensures all the three properties mentioned above. It is a

good exercise to prove the three properties from these formula.

Since the angular velocity ~ω represents the change rate of an angle ~ϕ, we can define an
angle by integrating ~ω.

~ϕ =

ˆ
~ω dt+ C
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whereC is just a constant angle (integration constant). The properties of this angle vector

~ϕ are inherited from those of ~ω. The direction of ~ϕ is along the rotation axis and the

length corresponds to the rotated angle (usually in radiants). The length of the path l of
an object rotated by ~ϕ is

l = |~ω × ~r|.

Before closing this section, we investigate the vectorial property of ~ω more precisely. For
this consider a body which performs simultaneously a rotation along the x, y, and z axis,
see figure 4.2.

ωx

ωy

ωz

ω

Figure 4.2: A body (gray shaded) is simultaneously rotating around all three axis. This

rotation is equivalent to a rotation around the angular velocity vector given as vectorial

sum of the rotation around each axis.

This rotation corresponds to a single rotation given by

~ω =

 ωx

ωy

ωz

 .

104



4.1. ROTATIONS

4.1.2 Angular Acceleration and General Motion

For a linear motion we found that the change rate of the velocity is the acceleration

~a = d~v
dt . Similarly we can define an angular acceleration

~α =
d~ω

dt
=
d2~ϕ

dt2
.

The acceleration of a body is then given by

~a = ~α× ~r

where ~r points from the rotation axis to the body.

If the angular acceleration is constant ~α = const, we can derive the angle and the angular

velocity with the same argument as for the linear motion and we get

~ω(t) = αt+ ~ω0

~ϕ(t) =
1

2
~αt2 + ~ω0t+ ~ϕ0

with ~ω0 and ~ϕ0 the corresponding values at t = 0.

4.1.3 Accelerated Frames and Fictitious Forces

Imagine, for example, to be sitting on a bus at night, as the cutest kitten suddenly appears

on the street a couple of meters ahead of the bus. The driver, almost immediately pushes

down the brake pedal. You feel how your body is somehow dragged forward and you

almost fall off your seat. It feels as if some magic force acting on your body had appeared

at the instant of braking. In this chapter we want to investigate this magic force and

we will see that it is an effect of being in an accelerated frame. Because the mother of

the kitten might have seen it from the roadside. For her, as much as she might have

been scared, the whole situation was nothing but a manifestation of Newton’s first law of

motion. The bus would decelerate, and you would just keep moving at your initial speed

along the direction of travel, no magic force involved. Still, from your point of view, the

magic force must have existed, as otherwise Newton’s first law would have been violated

in your reference frame.

As we already discussed in chapter 3.3.2 the simplest frames of reference are the inertial

ones where Newton’s laws are valid. If we have an inertial frame than all frames that

move with constant speed with respect to the inertial one are also inertial systems (details

see section 13.2.2). In this section we assume that we are in an inertial frame and look
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at an accelerated system and try to describe the dynamics in that accelerated one. For

this we denote all quantities we measure in our system without prime (~x,~v,~a, ~F ) and
those measured in the accelerated system with prime (~x′, ~v′,~a′, ~F ′). As the general case
is rather difficult, we will first have a look at special cases and in the end derive the general

result and interpret its constituents using the special cases.

4.1.4 Centrifugal force

The most common fictitious force is the centrifugal force, which is related to the cen-

tripetal force. Assume the accelerated system moves on a circle with constant angular

velocity ω and it contains a mass m which is at rest in this (accelerated) system. Then

from our inertial frame it is obvious that a force needs to be applied to the mass: Ac-

cording to Newton’s second law, without force the mass would perform a uniform and

linear motion (~v = const.). We have to force to perform the circular motion and the

corresponding force points towards the center of the motion and is given by

~F = m~a = −mω2~r

where~a is the centripetal acceleration as computed in section 3.2.3. Theminus sign comes
from the fact that the acceleration and hence also the force points toward the center of

the circle whereas ~r points from the center to the mass m. From this perspective (the

inertial frame) everything is clear. But in the system attached to the mass, this is different.

In that (accelerated) system, the mass does not move. Nevertheless a force acts on that

mass which could also be measured2. Therefore we have a force without acceleration

which obviously contradicts Newton’s second law. This seems only paradox since the

frame is accelerated, and in such a frame Newton’s laws are not valid anymore. In that

accelerated frame the mass pushes towards outside with the force

~F ′ = mω~r

which is the same as the centrifugal force up to the minus sign. The mass opposes the

changing of the direction and that’s the force we see in the frame of the mass.

2For example attaching the mass to a spring, the spring would change its length in both frames and hence

indicating a force
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Coriolis Force

~v

ω

x′

y′

m

t = 0

~v

ω
x′y′

m

t = ∆t

~v

ω

x′

y′

m

t = 2∆t

s(t)
s(t)

Figure 4.3: A body (black dot) moves with constant velocity. From the rotating frame its

trajectory is not a straight line but curved.

You might have experienced this force when walking around on a carousel. To approach

this force we consider a body and attached to it a coordinate system that rotates with a

constant angular velocity ω, see figure 4.3. In our inertial frame a body is moving with
constant velocity. According to Newton’s second low, no force is acting on that body.

From the view of the rotating frame still no force is acting on this body. But the body

does not move on a straight line, it seem accelerated. Again this contradiction is due to

the acceleration of the frame. To get a formal expression assume the body to be at the

center of the rotation frame andmoving with speed v. After a time∆t it passed a distance
∆x = v∆t. In the rotating frame the motion consists of two components. A radial one
v′r pointing radially away from the center and a tangential one v

′
t pointing in the direction

of the rotation. The first one stays constant as it nothing but the velocity we see from

outside v′r = v. The tangential velocity changes with the distance r(t) of the body to the
center v′t = r(t)ω and the apparent tangential distance is s(t) = ϕr(t) = ωtvt. Hence
it depends quadratically on time t and as a consequence it corresponds to a constant
acceleration. For a constant acceleration we had the formula x(t) = 1/2at2. Equating
x(t) and s(t) we can solve for a and get the Coriolis acceleration

a′cor = 2ωv.

This is therefore the acceleration seen from the rotating frame. Doing the computation
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more rigorously (see below) we find the vectorial dependence

~a = −2~ω × ~v

Similarly we can have a look at a body that moves along a straight line in the rotating

frame. In our inertial frame it performs a curved trajectory hence there is a force acting

which is given as ~Fcor = m~acor. Note that this force is not the Coriolis force itself because
the Coriolis force is a fictitious force and this force is not. The relation between this force

and the Coriolis force is the same as the relation between centripetal and centrifugal force

discussed in section 4.1.4.

Linear acceleration

If the accelerated system does not move on a circle but along a line and accelerates with

an acceleration a then also all objects that move with constant velocity in our frame well
be seen accelerated in the accelerated frame. From the view of the accelerated frame this

is again the case where no force acts but an acceleration is measured. On the other had we

can look at the case where a body does not move with respect to the accelerated frame.

From the inertial frame this body also accelerates with a and there must act a force F on

that object to enforce this acceleration. Once again the problem arises in the accelerated

frame because there the body does not accelerate (as it does not move) but a force acts

on that body which is opposite the one viewed from outside F ′ = −F . This is because
the body opposes its acceleration. This opposition is seen as force F ′ in the accelerated
frame. Nevertheless this is not a real force as it does not lead to an acceleration. It only

appears as a force since the frame is accelerated.

Rigorous Computation

To derive a formally complete and correct formula of the fictitious forces, we describe

how a position vector of a point massm from an inertial frameΣ is transformed into
an accelerated frame Σ′. Each system consist of a choice of basis vectors ~ex, ~ey and
~ez in Σ and correspondingly with prime in Σ′. The accelerated system moves with

respect to the inertial one. Its position with respect to the inertial one is given by a

time dependent vector ~R(t), see figure 4.4.
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x
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z

Σ

x′y′
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Σ′

~R(t)

~r′~r

m

Figure 4.4: The inertial frame Σ and the accelerated Σ′ are separated by a

vector ~R(t)

The relation between the position vector in each frame is given by

~r(t) = ~R(t) + ~r′(t).

As the mass might move with time, ~r(t) and ~r′(t) are assumed to be time dependent
3. The velocity of the massm in each system fulfils the relation

~v(t) =
d~r(t)

dt
= ~̇r(t)

= ~̇R(t) + ~̇r′(t) = ~V (t) + ~̇r′(t)

where ~V (t) is the velocity of the accelerated frame with respect to the inertial one.
For the second term where we take the derivative of ~r′(t)we have to be more careful.
Because not only the coordinates change but also the basis due to a rotation ~ω of

the system Σ′. Using the product rule for derivatives we get (dropping the time
dependences)

~̇ ′r(t) = ṙ′x
~e′x + ṙ′y

~e′y + ṙ′z~e
′
z + r′x

~̇e′x + r′y
~̇e′y + rz

~̇e′z

= ~v′(t) + ~u(t)
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where ~v′ is the velocity of the massm in the accelerated frame and ~u(t) = ω× ~r′ is
the velocity of the frame itself. This velocity origins from the rotation of the frame

around its axis. To get the acceleration, we have to take one more time derivative

and get

~a = ~̇v = ~̇V +~̇v′ + ~ω × ~̇r′

where we assumed that the angular velocity ω is constant. With the same argument

as above we find that ~̇ ′v = ~a′+~ω× ~v′. In addition we use ~̇ ′v = ~ω× ~v′+~ω×(~ω×~r′)
and we end up with

~a = ~a′ + ~A+ 2~ω × ~v′ + ~ω × (~ω × ~r′).

In the inertial frame Σ, Newton’s law holds such that m~a = ~F . This is not true
in the accelerated frame Σ′, where m~a′ = ~F + ~Ff with ~Ff being the sum of all

fictitious forces. Solving for ~a′ we get

~a′ = ~a− ~A− 2~ω × ~v′ − ~ω × (~ω × ~r′).

With this result the calculation is done and we can interpret the result.

• ~a is the acceleration in the inertial frame and is related to the total force via
~F = m~a.

• ~a′ is the acceleration measured in the accelerated frame. It differs from ~a by
the different fictitious accelerations:

• − ~A is the linear acceleration of the frame itself.

• −2~ω × ~v′ is the Coriolis acceleration.

• −~ω × (~ω × ~r′) is the centripetal acceleration.

With this we have derived all the fictitious forces in vector form.
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4.2 Rigid Bodies

A very important concept in the context of circular motion are rigid bodies. Although

they consist of many point-like particles, their fixed shape and fixed mass distribution

simplifies the computations a lot. After defining rigid bodies we will define and compute

useful quantities such as the center of mass or the momentum of inertia. In the end we

will explain how to describe different axes of rotation..

4.2.1 Definition and Basic Properties

As the name already says, a rigid body is a body whose form does not change. More

precisely:

A rigid body consists of many point-like particles whose distance is constant.

The distance is even constant if external forces act on the body. It therefore

keeps its shape and mass distribution.

Once again this is only a model, in nature no body exists that does not slightly deform

when applying a force. This model is therefore only valid if the deformation is negligible

compared to other effects. For example the trajectory of a football can be well described

by football being a rigid body. Nevertheless when the football gets kicked or hits the

ground, it is deformed and then this model is not valid anymore.

The advantage of dealing with rigid bodies lies in their rigidity meaning it reduces the

amount of variables that need to be considered when describing its motion. The position

of three point-like particles (being part of that body) suffices to describe the position

of all other constituents4. Instead of describing the rigid body by the position of three

constituents, it is usually easier to describe its position and its orientation. So at which

position it is and in what direction it is rotated.

In most cases there is another very useful approximation done. Considering the atoms

as point-like constituents of a rigid body, their number is usually very big (in the order

of 1023) and their inter atomic distance much smaller than the size of the body. Instead
of treating the atoms as point-like particles with mass m we consider a them to be con-

tinuously distributed in the body using their density ρ = mn where n is the number of
atoms per volume in the body. This allows to rewrite cumbersome sums by computable

integrals.

4Knowing the position of 2 particles does not suffice as the third one could still rotate around the axis

given trough the other 2 particles.
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4.2.2 Center of Mass

As already mentioned in the last section, the kinematics of a rigid body is completely

described by its position and its orientation. There is one particularly interesting point of

the body, the center of mass. l, the so-called center of mass.

We already encountered the center of mass in section 3.3.4. Before we define it for the

it to the rigid body, we want to view it from a different perspective. Assume we have a

system withN point-like particles where no external force is acting5. Therefore the total

momentum

~P =
N∑
i=1

~pi =
N∑
i=1

mi~vi

is conserved, where mi is the constant mass of the i
th particle and ~vi its velocity. Since

the velocity is the temporal derivative of the position and the mass of each particle is

assumed to be constant, we can take the time derivative in front of the sum

~P =

N∑
i=1

mi
d~ri
dt

=
d

dt

N∑
i=1

mi~ri =
d

dt
~RCM (4.1)

where TM is the total mass. The last sum is nothing but the center of mass of the system

times the total mass(compare also with 3.3.4). Since ~P is constant, equation 4.1 tells us,

that the center of mass remains constant or moves with a constant speed (otherwise the

derivative could not be zero). This shows again the equivalence between Newton’s first

law, the conservation of momentum and the constant speed of the center of mass. All

these laws can be derived from each other and hence have the same physical meaning.

We now face the rigid body as many point-like particle system. The formulas that follow

might look difficult or ugly but there is no need for you to be able to perform abstract

computations with this formulas. You should rather get the concept and be able to apply

it to simple cases such as the ones in the exercises. We start with the formula used

above and enumerate the particles (e.g. atoms) of the rigid body again by the index i and
compute the center of mass

~RC =

∑
imi~ri∑
imi

.

This is in general very complicated to compute and we pass on to the continues descrip-

tion of a rigid body. We split the whole body into small pieces. The piece lying at the

5Maybe the particles interact with internal forces but they anyway cancel each other, see section 3.3.4
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position ~r shall have the volume dV (~r). The mass dm(~r) of such a piece is then given
as

dm(~r) = ρ(~r)dV (~r)

where ρ(~r) is the density (mass per volume) at that position ~r. Replacing the sum by an

integral we arrive at

~RC =

´
V ~rdm(~r)´
V dm(~r)

=

´
V ~rρ(~r)dV (~r)´

V ρdV (~r)

where the subscript V denotes the summation/integration over the whole volume of the

body.

For symmetric, homogeneous bodies, the center of mass lies in the symmetry point of

that body. Examples are the homogeneous sphere, where the center of mass indeed is the

center of the sphere or similarly a cube or a cylinder. For bodies with rotational symmetry,

there is a useful trick to compute the center of mass by reducing the three dimensional

integral to a one dimensional. We split the body in small discs along the axis. Each disk

at the position h has a thickness dh. The radius r(h) of such a disc is a function of
its position h. Assuming a constant density ρ of our body, the mass of such a disc is
dm = πρr(h)2dh. Since the body is rotation symmetric, the center of mass certainly lies
on the symmetry axis. We obtain the distance hC of the center of mass from the origin

by summing/integrating the contribution of all these discs and arrive at

hC =
1

M

h2ˆ

h1

hdm =
1

M
πρ

h2ˆ

h1

r(h)2hdh (4.2)

where h1 and h2 denote the start and endpoint of the body along the symmetry axis.
Let’s have a look at an example: We compute the center of mass of a cone, see figure 4.5.

We set the origin on the symmetry axis at the top of the cone. The radius of the cone at

height h is

r(h) =
R

H
h.

whereH is the total height of the cone. Inserting this in equation 4.2 we get the distance
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H

R

O

hC

Figure 4.5: A cone with height H and maximal radius R.

of the center of mass from the top by

hC =
1

M
πρ

h2ˆ

h1

r(h)2hdh

=
1

M
πρ

Ĥ

0

(
R

H
h

)2

hdh

=
1

M
πρ

R2

H2

Ĥ

0

h3dh

=
1

M
πρ

R2

H2

1

4
H4

=
1

M

3

4
MH =

3

4
H

where we used the total mass beingM = ρ1
3πR

2H . For example for H = 12 cm, the
distance from the top to the center of mass is 9 cm!
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4.2.3 Momentum of Inertia

For translations, the mass is the ratio between the acceleration and the forcem = F/a.
Similarly we can define a quantity for rotations describing the ratio between the torque

and the angular acceleration. This ratio is called momentum of inertia and we have already

encountered it quickly in chapter 3.4.7. After having already warmed up by calculating of

the center of mass, we continue with the definition and computation of the momentum

of inertia and focus on the physical background later (i.e. the torque in chapter 4.8 or

rotation energy in chapter 4.3.3). To give a little bit of context, remember that the velocity

of a small piece of the rigid body is v = rω where r is the distance from the rotation

axis. To compute the kinetic energy, we have to square this velocity, leading to a factor of

r2. As the angular velocity is constant for the entire rigid body, the whole computation
difficulty remains in the r2 factor.

The momentum of inertia I is defined as the integral of the square of the distance or
formally:

I = ρ

ˆ
V
r2⊥dV

where we inserted the subscript in r⊥ to remember that only the distance from the ro-

tation axis counts and not the distance from the origin. Once again, this formula looks

complicated but there is no need to being able to compute it for a body with a wired shape.

Comparing with the center of mass, we had to integrate the distance ~r from a small vol-

ume element dV over the whole volume. Now we integrate the distance squared r2⊥.
Note one important difference to the center of mass: We always can choose a coordinate

frame such that the center of mass is at the origin, meaning the center of mass can be

zero. Since there is a square in the momentum of inertia, it will always be larger than zero

and zero only iff r⊥ = 0 hence if the body is not extended perpendicular to the rotation
axis, i.e. an infinitely thin rod rotating around its axis. In addition it is important that the

momentum of inertia depends on the rotation axis because r⊥ depends on the choice of
the rotation axis6.

The easiest non-trivial body to compute the momentum of inertia is a thin ring. Consider

a ring with radius R and a negligible thickness and rotation axis through the rotation

symmetry axis. As the thickness is negligible, each piece of mass has the same distance

r⊥ = R to the rotation axis and we can take it out of the integral and using dm = ρdV ,

6For a very general description, one would need to describe the momentum of inertia by a tensor, i.e.

a 3x3 matrix. Nevertheless looking at a particular rotation axis and considering a symmetric body rotating
parallel to one of its symmetry axis, it is sufficient to compute the momentum of inertia as number.
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we obtain

I = ρ

ˆ
V
r2⊥dV = R2

ˆ
V
dm = R2M (4.3)

whereM is the total mass of the ring.

To compute the momentum of inertia for rotation symmetric bodies, we will again divide

them in small disks. So we first need to know the momentum of inertia of a disc (same

as cylinder): Consider a disc with height H and radius R with rotation axis through the

rotation center of the cylinder, see figure 4.6 left. First we note that the momentum of

inertia is proportional to the height. Doubling the length of the disc corresponds to the

case where we stick two discs together along the symmetry axis. This leads to a doubling

of the momentum of inertia. Hence, we can seperate the integral into the integral along

the height h and the area perpendicular to it dV = dh·dA. The area itself is split into thin
rings with radius dr, see figure 4.6 right. As we know how to compute the momentum

R

H

dr

Figure 4.6: Left: Overview over the cylinder. Right: Top view, one little ring.

of inertia of a ring, we do a similar trick as before with the discs: Each ring with radius r
has a volume and a corresponding momentum of inertia according to 4.3

dV = H2πrdr

dI = r2ρdV.

The total momentum of inertia is therefore

I =

ˆ
dI = ρ

ˆ
V
r⊥dV = ρH2π

R̂

0

r2 · rdr

= 2πρH
1

4
R4 =

1

2
R2M
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where we used againM = ρHπR2 and that we defined r perpendicular to the rotation
axis, so r⊥ = r. This result is worth keeping in mind as we will be often used.

Example:

Using the momentum of inertia for a disc, we can now compute it for a sphere.

Consider a sphere with radius R and assume the rotation angle going through the

center and the origin lying in the center. We slice the sphere into thin discs along the

rotation axis. Let h denote the distance of such a disc from the origin. The radius

of this disc is given by r(h) =
√
R2 − h2 and hence its momentum of inertia is

dI = 1/2πρr(h)4dh. Summing up the momentum of inertia of all these discs, we

arrive at the total momentum of inertia

I =

ˆ
dI =

R̂

−R

1

2
πρr(h)4dh

=
π

2
ρ

R̂

−R

(R2 − h2)2dh

=
π

2
ρ

R̂

−R

R4 − 2R2h2 + h4dh

=
π

2
ρ

(
2R5 − 4

3
R5 +

2

5
R5

)
=

π

2
ρ
16

15
R5 =

2

5
R2

(
π
4

3
ρR3

)
=

2

5
R2M

whereM is again the total mass.

Similarly the momentum of inertia of another rotation symmetric body can be com-

puted.
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4.2.4 Parallel Axis Theorem (Steiner’s Theorem)

We have seen how we can calculate the center of mass and the momentum of inertia

and have done this also for different bodies. The question arises, how these quantities

transform when changing the rotation axis. In particular we are interested in the case

where we shift the rotation axis., i.e. the axis before and after the shift are parallel to each

other.

For the center of mass, the answer is pretty simple. Assume we move the coordinate

system by a vector ~T . Then the new center of mass is

~R′
C =

´
V (~r +

~T )dm(~r)´
V dm(~r)

=

´
V ~rdm(~r)´
V dm(~r)

+

´
V (~r +

~T )dm(~r)´
V dm(~r)

=

´
V ~rdm(~r)´
V dm(~r)

+ ~T

´
V dm(~r)´
V dm(~r)

= ~RC + ~T

where ~RC is the center of mass before the shift. We find that the center of mass is simply

shifted by ~T .

Shifting the axis is more complicated in case of the momentum of inertia because the

radius is squared in the integral. To efficiently proceed and find a useful formula we have

to assume that the rotation axis before the shift goes through the center of mass. For this

case, we denote the momentum of inertia by I . The new axis is shifted by a distance d,
see figure 4.7, and its momentum of inertia is denoted by I ′. Inserting the definition we
get

I ′ = ρ

ˆ
V
(r⊥ + d)2dV

= ρ

ˆ
V
(r2⊥ + 2r⊥d+ d2)dV

= I + d2ρ

ˆ
V
dV

= I + d2M

where the term containing 2r⊥d drops because the axis passes through the center of
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d

Figure 4.7: Two axis, one going through the center of mass, the other being parallel to

the first one.

mass7. The derived formula is called the parallel axis theorem and it is very useful (see

example below).

There is one important thing to mention which gets often forgotten: We can only apply

this formula if one of the axis passes through the center of mass. If this is not the case,

we have to apply this formula to compute the momentum of inertia for the axis passing

through the center of mass and from this we can continue the computation.

Example:

In the last section, we derived the momentum of inertia of a sphere. In case the

sphere rolls on a plane, the rotation axis is the contact point of the sphere on the

plane and not the middle point (note, Note that this axis is not constant in time, as

the contact point moves when the sphere is rolling.). Therefore the momentum of

inertia of the sphere rolling on the plane is

I =
2

5
R2M +R2M =

7

5
R2M.

Thanks to the Parallel Axis Theorem, we could just do this simple addition and avoid

any integration.

7Since r⊥ is not squared anymore, we have to include ”on which side” r⊥ lies, i.e. this term is nothing

but the computation of the distance of the center of mass from the axis. Since the axis passes through the

center of mass, this distance is zero.
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4.3 Dynamics of Rotation

In a system consisting ofN point-like particles, each particle has three degrees of freedom.

The dynamics of each point-like particle can be described by Newton’s laws, knowing the

dynamics of each particle determines also the dynamics of the whole system. The problem

is again the impossibility of solving such a problem as the number of equations is 3N .

As described above, the description simplifies in case of a rigid body. A rigid body has 6
degrees of freedom, the translations in all three spatial directions and rotations around all

three axis. As discussed in the chapter about the center of mass (see chapter 4.2.2), the

motion of the center of mass can be described by Newton’s laws. Therefore we know

how to describe the translational motion. In this section we have a look at the rotational

motion. For this we introduce the torque, the angular momentum and the rotational

energy. After introducing these quantities, we describe the general motion of a rigid

body which is a superposition of translation and rotation. Using these expressions and

the momentum of inertia, we find a very similar set of equations as for the translational

motion which we will summarize in the end of this chapter.

4.3.1 Torque

To change the velocity of any mass, we need to apply a force. The same concept also

exists for rotational motion and it is called torque. Namely, to change the angular velocity

of a rigid body, we need to apply a torque. To motivate the formula, consider two discs

with different diameters. Around each disc, a string is wound and at the end of each string

a constant force is applied, see figure 4.8. The work needed per rotation of each disk is

r1
r2

F F

Figure 4.8: Two discs with different diameters r1 and r2. Around each disc a string with
a mass at one end is wound.

given by the force times the path lengthW = F2πr. Although the force is constant, the
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work is different because of the different path length8. Therefore the work scales with

the radius of the disc. Hence it will be convenient to introduce a new quantity related to

the work which takes into account the radius.

This quantity is the torque. It is basically defined as the force times the distance between

the rotation axis and the position that force acts. There is one thing we have to take into

account: only the force acting perpendicular to that distance will influence the rotation.

A force pointing towards the rotation axis will only push against that axis but not cause

any rotation. Once again the vector product is very convenient as it allows to respect all

the properties we discussed. The torque is defined as

~M = ~r × ~F

| ~M | = rF⊥

where ~r is the vector pointing from the rotation axis to the point where the force ~F acts,

r is its absolute value and F⊥ the component of the force acting perpendicular to ~r. In
case you don’t remember whether the torque is ~r × ~F or ~F × ~r, there is a trick to find
the proper version. Take your right hand and bend your fingers slightly (as if you would

hold a cup of tea) and hold the thumb up. When the torque points in the direction of the

thumb, the force has to act in the direction of all the other fingers.

Note that the torque is not only defined for a rigid body. For example you could consider

the torque of a system with many point-like particles which do not form a rigid body.

Then ~ri being the position of the i
th particle and ~Fi the force acting on it, the torque

acting on that particle is ~Mi = ~ri × ~Fi. Nevertheless at rigid bodies, there are some very

useful relations to other quantities we encountered so far. The vectorial definition of

the torque is compatible with the vectorial definition of the angular velocity and angular

acceleration. In case of a rigid body, the applied torque is proportional to the angular

acceleration ~α and the proportionality constant is the momentum of inertia I

~M = I~α.

Proof: To see this, consider a rigid body with momentum of inertia I and assume, there is one force
~F acting at one point ~r. As it is a rigid body, there are internal forces between the different parts
of the body causing the entire body to change its angular velocity. For each little piece dm(~r ′)

located at ~r ′, we can apply Newton’s law d~F (~r ′) = dm(~r ′)~a = dm(~r ′)~r ′ × ~α. Hence ~α is
constant for all these pieces whereas ~a is not. The equations still hold, when applying the vector

8The path length per rotation the circumference, hence: 2πr1 6= 2πr2.
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product with the position ~r ′:

dM(~r ′) = ~r ′ × d~F (~r ′) = dm(~r ′)~r ′ × (~r ′ × ~α)

= dm(~r ′)~r ′ × (~r ′
⊥ × ~α)

= dm(~r ′)~r ′
⊥
2
~α

using in the second line that the vector product does not change when only considering ~r ′
⊥ the

perpendicular component with respect to ~α and in the end ~a× (~b×~c) = (~a ·~c)~b− (~a ·~b)~c and
~r ′
⊥ ·~r ′ = ~r ′

⊥
2
. The sum of all these angular momenta acting at the different piece must be equal

to the applied momentum

~M = ~r × ~F =

ˆ
dM(~r ′) dm

=

ˆ
~r ′
⊥
2
~αdm(~r ′)

= ~α

ˆ
~r ′
⊥
2
dm(~r ′)

= I~α.

�

When considering the stable equilibrium of a rigid body, we also have to consider the

torque

A rigid body is in a stable equilibrium only if the total force and the total torque

are zero. If the torque is not zero, the body starts rotating around its center of

mass

4.3.2 Angular Momentum

For translations we found that the momentum is conserved if no force acts. Similarly

we can find a conserved quantity for rotations as long as no torque is acting. This quan-

tity is the angular momentum and we can derive its conservation in a similar way as for

momentum.

The angular momentum of a point-like particle is defined as

~L = ~r × ~p
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where ~r is the position and ~p the momentum of that particle.

Taking the time derivative on both sides, and using ~v‖~p and the product rule
for derivatives adapted to the vector product, we arrive at

d~L

dt
=
d~r

dt
× ~p+ ~r × d~p

dt
= ~r × ~F = ~M.

This means the angular momentum is changed when a torque is applied.

For a system of N particles, this relation is valid when considering the total angular mo-

mentum and the total force. This follows directly from the linearity of the derivative9:

d~Ltot
dt

=

d
N∑
i=1

~Li

dt

=
N∑
i=1

d~Li

dt

=

N∑
i=1

(
d~ri
dt

× ~pi + ~ri ×
d~pi
dt

)

=

N∑
i=1

~Mi = ~Mtot.

The computation of the angular momentum simplifies again for a rigid body. The deriva-

tion is similar as in case of the torque (see 4.8)

The angular momentum ~L of a rigid body is

~L = I~ω

where I is the momentum of inertia and ~ω is the angular velocity. An applied
torque changes the angular momentum

d~L

dt
= I

d~ω

dt
= I~α = ~M

9Meaning the sum and factor rule.
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4.3.3 Rotational Energy

Opposite to the previously introduced concepts like torque or angular momentum, the

rotational energy is not a new concept, see section 3.4.7. It is convenient to introduce the

rotational energy for a rigid body as the distinction of the translation of the the center of

mass and the rotation around the center of mass is very intuitive. In case the rotation is

not performed around the center of mass, the partition into (translational) kinetic energy

and rotational energy is sometimes a bit arbitrary, see also the example at the end of this

section.

Consider a rigid body rotating round an axis without translation. We again split the body

into small pieces dm(~r) located at the position ~r. The rotation energy dErot of such a

piece is

dErot =
1

2
dmv2

=
1

2
dmr2⊥ω

2

where r⊥ is the distance of d(~r) from the axis. Integrating over all these small contribu-

tions to the rotational energy, and using ω being constant, we arrive at

Erot =

ˆ
V
dErot

=

ˆ
V

1

2
r2⊥ω

2dm

=
1

2
ω2

ˆ
V
r2⊥dm =

1

2
Iω2.

In close analogy to the translational kinetic energy we found

The rotational energy of a rigid body with momentum of inertia I and angular
velocity ω is

Erot =
1

2
Iω2

It is minimal when the rotation axis passes through the center of mass as I is
minimal (see section 4.2.4).

As discussed in the section about the momentum of inertia (see section 4.2.3), the mo-

mentum of inertia depends on the rotational axis. In general it is possible to change the
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rotation axis by introducing an additional translational motion. We illustrate this in the

following example

Example:

Consider a cylinder with massm rolling on a horizontal plane, see figure 4.9. There

are two different rotation axis that can be considered. Each case leads to a different

rotation energy, of course the total energy remains the same.

v

Figure 4.9: Left: The rotation axis is the center of the cylinder. The center

of mass moves with a velocity v = rω. Right: The rotation axis is the point
where the cylinder touches the plane. Each point on the cylinder has its own

axis, the axis changes permanently. In this case, the body does not perform

any translation.

The first case is more intuitive. The cylinder performs its rotation around its center

and performs a translation with velocity v = rω, where r is the radius of the cylinder.
We can compute the kinetic, the rotation and the total Energy as

Ekin =
1

2
mv2 =

1

2
mr2ω2

Erot =
1

2
I0ω

2 =
1

2

1

2
mr2ω2

Etot = Ekin + Erot =
3

4
mr2ω2 =

3

4
mv2.

where we denoted the momentum of inertia for the axis passing through the center

of mass by I0. Note that in this choice of the axis, the rotation energy is minimal.
Now we consider a different rotation axis, the point where the cylinder touches the

plane: In this case the cylinder only performs a rotation around this axis but no

translation. Note in this considerations the rotation axis is different for each point

on the cylinder. To compute the momentum of inertia for this axis, we have to apply

the parallel axis theorem

I = I0 +mr2 =
1

2
mr2 +mr2 =

3

4
mr2.
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Computing the different energy contributions, we arrive at

Ekin = 0

Erot =
1

2
Iω2 =

1

2

3

2
mr2ω2

Etot = Ekin + Erot =
3

4
mr2ω2 =

3

4
mv2.

As mentioned above, the total energy is the same, the partition between kinetic and

rotational energy is not well unique. We can interpret the resulting total energy as

a redefinition (renormalization) of the mass: The rotation energy contributes to the

total energy and the total energy of the rolling cylinder is the same as that of a point-

like particle of mass m̃ = 3
2m and velocity v = rω. This is useful if the cylinder does

not move on a plane but in a more complicated landscape. As long as the cylinder

rolls and does not glide, its motion of the center of mass is the same as the one of a

point-like mass with m̃ moving along the same trajectory as the center of mass.

4.3.4 General Motion of a Rigid Body

For a rigid body that is free to movable and rotate, we can in general divide the motion

into the motion of the center of mass and a rotation around the center of mass. The

motion of the center of mass is determined by the total force acting on the body (see also

section 4.2.2). The center of mass moves as if it would be a point-like particle with mass

m (the mass of the rigid body) according to Newton’s laws

m
d2~rC
dt2

= m~aC = ~Ftot.

The rotation of the body around its center of mass is determined by the total torque and

we find

I
d2~ϕ

dt2
= I~α = ~Mtot

where I is the momentum of inertia with respect to axis through the center of mass and

the direction determined by the direction of ϕ. In general this motion is very complicated
and we will only treat easy exceptions.
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4.3.5 Analogy Translation and Rotation

Formally, there is a one by one correspondence between the expressions used to describe

the translation and the rotation. We summarize this in the following table.

Translations Rotations

Quantity Scalar Vectorial Quantity Scalar Vectorial

Distance r ~r Angle φ ~ϕ
Velocity v ~v Ang. vel. ω ~ω
Acceleration a ~a Ang. acc. α ~α
Mass m Mom. of in. I

Momentum p = mv ~p = m~v Ang. mom. L = Iω ~L = ~ω × ~F

Force F = ma ~F = m~a Torque M = Iα ~M = I~α

Work W = F∆r W =
´
~Fd~r Work W = M∆ϕ W =

´
~Md~ϕ

Power P = Fv P =
´
~Fd~v Power P = Mω W =

´
~Md~ω

Energy Ekin =
1
2mv2 Ekin =

1
2m~v2 Energy Erot =

1
2Iω

2 Erot =
1
2I~ω

2
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4.4 Gravity

4.4.1 NEWTON’s Law of Gravity

I guess there’s no need to explain you what gravitational attraction is, you’ve surely heard

about it in school. Let’s get straight to the point by introducing a notation for gravitational

forces that takes their vectorial nature into account:

Newton’s Law of Gravity

A point-like massm1 located at ~r1 exerts the gravitational force

~F1→2 = G
m1m2

|~r1 − ~r2|3
(~r1 − ~r2) (4.4)

on another point-like massm2 located at ~r2, where

G = 6.67 · 10−11m3s−2kg−1 (4.5)

is the universal gravitational constant.

In school you might have encountered something more like

F = G
m1m2

r2
(4.6)

for the magnitude F of gravitational attraction between the point-like masses m1 and

m2 at distance r apart. This formula looks indeed simpler than (4.4), but it contains no
information about the direction of the force. From (4.4), you see that the force acting from

m1 onto m2 is an attractive force, as ~r1 − ~r2 shows from m2 towards m1. We leave it to

you to show that formula (4.6) is easily derived from (4.4).

Look at how the third law of motion is contained in (4.4): by swapping the subscripts 1

and 2, you see that

~F2→1 = −~F1→2,

that is, the two bodies 1 and 2 act on each other by means of opposite gravitational forces

of equal magnitude.
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4.4.2 Gravitational Fields

Consider a large mass distribution, like a planet or a star, exerting gravitational forces on

other smaller objects in its surroundings, like meteoroids, comets, satellites, or human

beings. These objects are assumed to be so small that they do not affect motion of the

larger mass distribution.

To calculate the gravitational force by which an extended mass distribution acts on a small

massm, we can think of the large mass distribution as being composed by a large amount
of point masses mi, every of which will exert its ‘own’ gravitational attraction ~Fi on m
according to

~Fi = G
mim

|~ri − ~r|3
(~ri − ~r) ,

where ~ri denotes the position of the i-th point mass mi and ~r the position of m. To
calculate the total gravitational attraction onm, we make use of the extremely important

Principle of Superposition

Consider three point masses mA, mB and m. If mA and m were alone, let ~FA be the

gravitational forcemA would exert onm. Analogously, let ~FB be the gravitational force

by which mB would act on m if mB and m were alone. The gravitational force acting

onm if bothmA andmB are around is then given by

~FA + ~FB.

In other words: The gravitational force by which a system of point masses acts on another

point mass is given as the vector sum of all gravitational forces by which each of the point

masses of the system alone would act on this other point mass.

Applied to our situation, this simply means that we can calculate the total gravitational

attraction acting onm as ∑
all massesmi

~Fi =
∑
i

G
mim

|~ri − ~r|3
(~ri − ~r)

= m ·

(
G
∑
i

mi

|~ri − ~r|3
(~ri − ~r)

)
.

The very last term in brackets is a quantity describing how the distribution of the masses

mi in space exerts gravitational forces on a mass located at ~r. We will call this therm the

gravitational field ~g (~r) produced by this distribution of masses at ~r, such that we can write
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~F = m~g (~r) . (4.7)

with

~g (~r) = G
∑
i

mi

|~ri − ~r|3
(~ri − ~r) . (4.8)

So far for systems consisting of point masses. Calculation of gravitational fields produced

by extended mass distributions turns out to be somewhat more difficult. Exactly as we

did there, we can treat continuous mass distributions as continuous by introducing their

mass density % (~r) and turning the sum into an integral:

The gravitational field produced in point ~r by a continuous mass distribution % confined
to the portion of space Ω is given by

~g (~r) = G

ˆ
Ω

% (~r′)

|~r′ − ~r|3
(
~r′ − ~r

)
dV ′. (4.9)

Again, your math courses will show you such integrals can be computed in various situ-

ations. You might realize that dealing with the integrand of (4.9) can be a rather tedious

affair. Fortunately, a very elegant law exists that makes calculation of gravitational fields

in particularly symmetric situations quite simple:

Gauss’ Law for Gravitational Fields

Let Ω be a volume in space and ∂Ω its outer surface. For gravitational field ~g, the fol-
lowing identity is valid: ˛

∂Ω
~g · d ~A = −4πGmΩ, (4.10)

wheremΩ denotes the total mass located inside Ω.

You probably already know a very similar law by Gauss for electric fields and charge

distributions. Indeed, both the gravitational and the electrostatic versions of Gauss’ law
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are nothing but a direct consequence of the inverse-square-law nature of Newton’s law

of gravity and Coulomb’s law of electrostatic interaction, respectively. Again, your math

courses will tell you what the integral in the left-hand side of (4.10) means and how to

calculate it.

We won’t discuss Gauss’ law in great detail as you can learn more about it in your elec-

trodynamics courses. However, we will show you one very important application.

Many Olympiad problems involving gravity deal with planets or stars, which are in most

cases treated as spheres of homogeneous mass density. We will use Gauss’ Law to cal-

culate the field induced by such a homogeneous sphere of total massM and radius R in any

point of space. This situation shows perfect spherical symmetry in space, that is, one could

rotate everything about the center of the sphere by any angle and you wouldn’t be able

to tell the difference. Therefore, magnitude of the gravitational field must be the same at

any point located at the same distance r from the center of the planet. Furthermore, still

due to spherical symmetry, the vector ~g must point in radial direction anywhere in space:
spherical symmetry would be broken if ~g had at some point in space a non-vanishing
component not pointing in radial direction. Choose a coordinate system with origin at

the center of the sphere. The gravitational field at any point in space ~r can be described
as

~g (~r) = g(r) r̂

with the projection g (~r) of the gravitational field on r̂. First, we consider a point located
inside the sphere, that is, r < R. Now apply (4.10) on a sphere V (r) of radius r concen-
tric to the planet. The surface integral on the left-hand side is obtained by subdivision of

the surface ∂V (r) of the sphere into many infinitesimal area elements dA with normal

vectors n̂ and taking the sum over the scalar products ~g · dA n̂ at any such area element,
that is, something like

ˆ
∂V
dA ~g (at this area element) · n̂ (at this area element)

=

ˆ
∂V
dA (g(r)r̂) · r̂

= g(r)

ˆ
∂V
dA

= g(r) · surface area of ∂V (r)

= g(r) · 4πr2,
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where we used n̂ = r̂ for all surface elements on the sphere. Our result,

˛
∂V (r)

~g · d ~A = 4πr2 · g(r),

is, according to (4.10), equal to −4πG times the total mass mV (r) = M · (r/R)3 con-
tained within V (r), that is,

4πr2 · g(r) = −4πG · M
R3

r3

⇔ g(r) = −GM

R3
r.

Inside the sphere, the magnitude of gravitational field increases linearly with the distance

from its center.

Now apply the same strategy for any point outside the sphere, that is, r > R. The mass
mV (r) contained inside a spherical surface of radius r around the center is now just the
total massM of our spherical body. Gauss’ law now yields

4πr2g(r) = −4πGM

⇔ g(r) = −GM

r2
,

which is the same as the field produced by a point massM located at the origin. This is

a very important result:

The gravitational field inside a homogeneous sphere of massM and radius R increases

linearly with the distance from the center of the sphere:

~g (~r) = −GM

R3
r3 r̂, 0 < r < R (4.11)

Outside the sphere, the gravitational field behaves as if the sphere was a point massM
located at its own center:

~g (~r) = −GM

r2
r̂, r > R. (4.12)
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4.4.3 Energy and Angular Momentum in Gravitational Fields

In school, you might already have encountered the expression

Epot = −G
Mm

r
(4.13)

for potential energy of a small massm subject to gravitational field of the larger massM
at distance r from it. This expression arises from the definition of potential energy of the
particle as the amount of work an external force would have to perform to move the mass

inside the field from infinity to a point at distance r from the center of the field.

Consider a point ~r at distance r from the center of the field and another arbitrary point

~r′ at distance r′ from the center. The amount of work done by an external force when

displacing the mass from ~r′ to ~r along a path γ connecting ~r′ to ~r is the line integral

Wγ = −
ˆ
γ
m~g · d~s

Decompose the path γ into very small segments d~s in such a way that their direction
is either radial or perpendicular to the radial direction. The force vector m~g is always
directed radially, therefore only terms with radial d~s will contribute to the integral, since
all other terms vanish with ~g · d~s = 0. Therefore, the value ofWγ is independent of the

exact shape of γ as long as it connects ~r′ to ~r. Furthermore, the exact position of both
~r′ and ~r is not relevant for the value ofWγ , they could be replaced by any points located

at distance r′ and r, respectively, from the center ofM . For calculation ofWγ , we can

therefore replace ~r′ and ~r by the two points (r′, 0, 0) and (r, 0, 0), respectively:

Wγ =

ˆ r

x=r′

(
+
GMm

x2
x̂

)
· (dx x̂)

= GMm

ˆ r

x=r′

dx

x2

= GMm

(
1

r′
− 1

r

)
,

that is,
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Suppose a large massM generates a gravitational field at the origin of a coordinate system.

The work an external force has to do to bring a small massm from a point at distance r′

from the origin to another point distant r from the origin is equal to

GMm

(
1

r′
− 1

r

)
. (4.14)

Now back to the concept of potential energy. In a homogeneous gravitational field,

one can define potential energy of an object as the amount of work an external force

has to perform to bring the object from a determined reference height to the height of

the object’s current position. For central gravitational fields, we can apply an analogous

definition. It seems reasonable to choose infinity as a distance of reference: if we let

r′ → ∞, the corresponding term of (4.14) vanishes. That is, we are left with equation

(4.13).

Problems involving gravity can often be solved by considering conservation of mechanical

energy of an object moving in a gravitational field:

Total mechanical energy

E =
1

2
mv2 −G

mM

r
(4.15)

of an object of massmmoving in a gravitational field produced by a large massM at the

origin is constant over time.

Gravitational fields as from pointmasses or homogeneous spheres are radial. In particular,

angular momentum of particles is preserved as they move in such fields.

4.4.4 Two Objects Subject to Mutual Attraction

So far, we have only considered small masses subject to an external gravitational field

produced by a mass distribution so large not to be affected by the small mass. We turn

now to the discussion of systems consisting of two masses m1, m2 of similar orders of

magnitudes, such that motion of each is influenced by gravitational attraction from the

respective other mass. In such a system, if not subject to any other external forces, the

following conservation laws hold:
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• Position of the center of mass (m1~r1 +m2~r2) / (m1 +m2) is constant over time.

• Total energy

E = Ekin, 1 + Ekin, 2 + Epot

=
1

2
m1v

2
1 +

1

2
m2v

2
2 −G

m1m2

r12

is a conserved quantity, where r12 denotes the distance between the two particles.

• Total angular momentum

~L = m1~r1 × ~v1 +m2~r2 × ~v2

is a conserved quantity

Note how the expression for total energy consists of three parts: one term for kinetic

energy of each particle, Ekin, 1 and Ekin, 2, and one for potential energy

Epot = −G
m1m2

r12
. (4.16)

This expression for potential energy of a system of two point masses looks very similar

to the expression derived in the previous section for a single particle moving in a central

gravitational field. The two situations are slightly different though. In the last section,

we would deal with a gravitational field and potential energy of the particle was defined

as the amount of work done an external force when dragging the particle from infinity

to its current position in the field. Here we are dealing with two point masses and using

the concept of field as in the last section doesn’t make too much sense as either mass

influences motion of the other one with its gravitational attraction. We can, however,

define the potential energy of the system as the amount of work one would have to

perform to assemble it in its current spatial configuration. This assembling might take

place in two steps as follows: take m1 from infinity and put it to ~r1 first, then take m2

from infinity and place it into ~r2. The first step does not require any work, as m1 is all

alone in its way to ~r1 and no force acts on it. For the second step, we need to move
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m2 against gravitational attraction exerted by m1, and the work required is exactly the

same as if we thought of m2 being moved in a gravitational field produced by m1 and

the amount of work required is therefore just the term on the right-hand side of (4.16).

Note that while m2 is put into ~r2, some force must prevent m1 from slipping off its

position at ~r1 due to attraction by the approaching m2. This force does not contribute

any mechanical work, sincem1 is not displaced under its influence.

4.4.5 KEPLER’s Laws of Planetary Motion*

Here as well, you most probably already know these laws from your high school physics

courses. This section will give you short clarifications about the concepts involved, as they

might provide a deeper understanding of the principles governing gravity and Newton’s

laws of motion.

Kepler’s Laws of Planetary Motion

1. The orbit of a planet around the sun is a plane ellipse, the sun lies at one of its two

foci.

2. Consider the radius vector pointing from the sun to the planet as it moves along

its orbit. During equal amounts of time, the radius vector sweeps out segments of

the ellipse of equal area.

3. The third power of the semi-major axis of an elliptical planet orbit is proportional

to the square of its orbital period around the sun.

The First Law

To understand the first law, we need to clarify some geometry. An ellipse can be defined

in different but equivalent ways:

A: As the figure you get by stretching a circle by any factor with respect to a straight

line.

B: As the locus of all points in the plane such that the sum of their distance to two

given, fixed points, called the foci of the ellipse, is a constant.

C: As the locus of all points in the plane whose distance from a given point, called

a focus of the ellipse, is proportional to their distance from a given straight line,
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called the directrix, with a constant of proportionality < 1.

D: As the figure you get by intersecting a cone with a plane under such an angle that

the figure is closed.

You might find it an interesting exercise in geometry to prove the equivalence of all these

definitions. Anyway, for Olympiad problems, the following two parametrizations of an

ellipse in the xy-plane are useful:

(x
a

)2
+
(y
b

)2
= 1 (4.17)

in Cartesian coordinates and

r(ϑ) =
p

1 + ε cosϑ
(4.18)

in polar coordinates. You might verify that both equations describe the same curve in the

plane under certain conditions for a, b, p, ε.
Equation (4.17) is probably the most useful to understand the concept of major and minor

axis. These are defined as the largest and smallest diameter, respectively, of the ellipse.

It is easy to show that their values are given by 2a and 2b, respectively, if the ellipse is
described as in (4.17). Furthermore, they coincide with the x- and y-axis. Note how an
ellipse is also supposed to have two foci, such that the sum of the distances of any point

on the ellipse to the two foci is a constant. You might verify that the foci of the ellipse

as introduced in definition B are situated at (−s, 0), (s, 0) with s =
√
a2 − b2 if a > b

or at (0,−s) and (0, s) with s =
√
b2 − a2 if b > a. In particular, this means the foci

are always situated on the major axis. Conversely, by starting with definition B with two

foci lying on either the x- or y-axis, you might retrieve equation (4.17) for description of
the ellipse in the xy-plane.
In (4.18), the quantities p and ε are called semi-latus rectum and eccentricity of the ellipse, re-
spectively. You can verify that the curve described by this equation satisfies the condition

of definition B with one focus at the origin and the other located at
(
−2εp/

(
1− ε2

)
, 0
)

on the x-axis. Definition C is satisfied for the focus at the origin with a directrix described
by the equation x = p/ε, the constant of proportionality between the distance from
the points to the origin (which corresponds to r) and the distance from the points to
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the directrix (which corresponds to the points’ x-coordinates) is equal to ε. The ellipse
intersects the y-axis at two points distant p from the origin.

I bet you can’t wait to see how an equation like (4.17) or (4.18) can arise from the equa-

tions of motion of a body subject to universal gravitation. The calculations involved

are somewhat elaborate and may not be of great help for solving physics competition

problems.

At this point, it is just important for you to understand what an ellipse is, what its foci are,

and to keep in mind that closed planetary orbits are ellipses with the sun at one focus.

In addition, it sure wouldn’t hurt to feel comfortable around the different geometrical

definitions of an ellipse, so feel free to practice your skills in analytic geometry and play

around.

The Second Law

Kepler’s second law is a direct consequence of conservation of angular momentum. Put

the whole orbit into a polar coordinate system with the sun at the origin. The position of

the particle can be written as

~r = (r cosϕ) x̂+ (r sinϕ) ŷ,

at any time. The velocity vector is obtained by taking the time derivative

~v = ϕ̇ ((ṙ cosϕ− r sinϕ) x̂+ (ṙ sinϕ+ r cosϕ) ŷ) .

The angular momentum vector is then found to be

~L = m~r × ~v = r2ϕ̇ ẑ

ifm is the mass of the planet.

During a small amount of time t, let the position vector of the planet sweep out a small
area dA of the ellipse, thereby covering an angle dϕ = ω dt with ω = ϕ̇. The small area
can be approximated as a triangle, such that it amounts to 1

2 · r · rdϕ = ωr2dt/2. Due to
conservation of angular momentum, we know that ωr2 is a conserved quantity. This just
means that the area dA swept out during dt is a constant and that it does not depend on
the position of the planet along its orbit. We see that this is also true for any finite time

interval of a given length ∆t between any times t1 and t2 = t1 +∆t, as the area swept
out by the position vector is just calculated asˆ

time interval [t1, t2]
dA =

ˆ t2

t1

1

2
ωr2(t) dt =

L

2m

ˆ t2

t1

dt =
L

2m
·∆t,

which does not depend on the exact position of the time interval as long as its length is

∆t – just the statement of the second law.
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The Third Law

It is quite easy to verify the third law for a circular orbit. Suppose the planet of mass

m moves on a circular orbit of radius R around the sun of massM with a time period

T . Then gravitational attraction of the sun on the planet must account for centripetal
acceleration, and, by the second law of motion:

m

(
2π

T

)2

R = G
mM

R2
,

which is equivalent to

R3

T 2
=

GM

4π2,

in other words, circular orbits satisfy Kepler’s third law. Calculations for general elliptic

orbits are somewhat more complex.
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Chapter 5

THERMODYNAMICS

Alice: “Brrrr, its cold in here, only

17 °C.” Bob: “It’s 4 °C outside, just

open the window and let those

remaining degrees in.”

Note that Maxwell’s demon may help Bob.
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5 Thermodynamics

Thermodynamics is a phenomenological treatment of classical macroscopic systems and

their properties. The systems looked at in thermodynamics involve many degrees of free-

dom (∼ 1023). Therefore it is impossible to solve the equations of motion exactly.

In this chapter, we will first look at some important definitions, before looking at ideal

gases and heat engines. In the end, we will also have a quick look at real gases and the

Stefan-Boltzmann law.

5.1 Important definitions

Mole: base unit for the amount of substance. One mole of a substance contains

exactly NA particles. (See figure 5.1.)

Avogadro constantNA:

the number of molecules in one mole. NA ≈ 6.022× 1023mol−1.

Boltzmann constant kb:

an important proportionality constant in statistical physics to relate energy

and temperature. kb ≈ 1.380× 10−23 JK−1

Gas constantR:

proportionality constant to relate energy to a mole of particles at a stated

temperature. Molar version of kb: R = kb ·NA

Volume V : space in which the system is confined in.

Temperature T :
measured quantity of a thermometer.

Pressure p: force applied per unit area.

Number of moleculesN :

number of molecules confined in the considered volume.

Amount of substance n:
molar version of N . (See figure 5.1.)

WorkW : energy transferred from or to the system by expansion/compression.

HeatQ: transferred energy between systems due to temperature differences.
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Internal energy U :

also sometimes called just energy, all the energy inside the system.

Ideal gas: a collection of neutral atoms or molecules where the interaction between

individual particles can be neglected.

mass of one particle
number of particles

amount of substance

Avogadro constant

mass

molar mass

molar volume

density

volume

Figure 5.1: Connection between mass, volume, number of particles and amount of sub-

stance. The value for the molar volume is for one mole of an ideal gas at 0 °C and

101.325 kPa. Adapted from [9].

5.2 The temperature scale

Since there is no easy way to define temperature, we just state that the temperature is a

physical quantity that tells us in which direction the heat flows. Heat always flows in the

direction of the body with the lower temperature. A way to measure this temperature is

by using a thermometer, which uses thermal properties of materials to measure the tem-

perature. Examples are the thermal expansion of mercury, an electrical resistance that

changes with temperature or the volume of a gas at constant pressure.

143



5 Thermodynamics

The temperature is a scalar (a number) measure which is constant in an isolated system

in thermodynamic equilibrium. There are 3 main scales for temperature (Kelvin, Celsius

and Fahrenheit), but in physics, only Kelvin and, in rare cases, Celsius are used. In figure

5.2, a comparison between the scales can be seen.

The Kelvin scale starts at absolute zero, which is equal to−273.15 °C. At 0K all thermal
motion freezes. There is no temperature that is < 0K. The Kelvin scale also uses the

same temperature step as the Celsius scale and therefore we can easily switch between the

two:

T [°C] + 273.15 = T [K] (5.1)

Note that most equations in physics only work properly if you calculate everything in the

Kelvin temperature scale and with no other.

Figure 5.2: Comparison of different temperature scales related to the energy scale via the

Boltzmann constant kb (e.g. for T=300K ⇒ kbT = 4.1× 10−21 J ) with the corre-

sponding energies in Zeptojoule (1 zJ = 1× 10−21 J).[10]
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5.3 Zeroth law of thermodynamics

The zeroth law of thermodynamics states that if we bring two bodies (A&B) with differ-
ent temperatures (TA & TB) into contact, the two bodies will reach a thermal equilibrium

(Teq) after a certain time. Since the temperature is a measure of thermal movement of

atoms/molecules (see chapter 5.12), the equilibrium temperature Teq is between TA and

TB :

TA < Teq < TB or TA > Teq > TB, (5.2)

depending on which body had the higher temperature in the beginning.

5.4 Thermal energy and heat capacity

When two bodies with different temperatures touch each other, the heat of one body

flows to the other until they have the same temperature. This thermal energy Q is often

(especially in chemistry) measured in calories (cal):

1 cal = 4.1868 J, (5.3)

where one calorie is the heating energy one needs to heat up 1 g water at normal pressure

(p = 1 bar) from 287.65K to 288.65K. Today the SI-unit Joule should be used, but in
many textbooks one can still find calories.

Different materials also take different amounts of energy∆Q to increase the temperature

by a certain extent ∆T . Therefore we define the heat capacity C which is a measure of

how much thermal energy the body needs to heat up.

C =
∆Q

∆T
⇔ ∆Q = C ·∆T (5.4)

Usually the heat capacity is normalized to the mass of the body (specific heat capacity

Cm) or the amount of substance (molar heat capacity CM ), i.e.

Cm =
1

m

∆Q

∆T
(5.5)

and

CM =
1

n

∆Q

∆T
. (5.6)
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5.4.1 Molar heat capacities of ideal gases

In general there are two different types of heat capacities (for gases). The heat capacity of

a substance depend on how one measures it: If you measure it while leaving the pressure

constant (Cp) the specific heat is higher compared to when you leave the volume constant

(CV ). This means that one needs different amounts of energy to heat the same amount

of particles, depending on how one heats them up. This is because additional work is

done when expanding the system while keeping the pressure constant. This can be seen

from figures 5.3 and 5.4. The difference between the two molar heat capacities is exactly

the gas constant

R = Cp − CV . (5.7)

For a derivation look at equation (5.15) and divide both sides by n∆T .

V

p

T

V

p+∆p

T +∆T

∆Q = nCV ∆T

Figure 5.3: Heat capacity with constant volume.

V

p

T

V +∆V

p

T +∆T

∆Q = nCp∆T

Figure 5.4: Heat capacity with constant pressure.
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5.5 Ideal gas law

The most important equation in classical thermodynamics is the ideal gas law

pV = nRT, (5.8)

which can also be written as

pV = NkbT. (5.9)

It is a combination of the empirical Boyle’s law (p ∝ 1
V ), Charle’s law (V ∝ T ) and

Avogadro’s law (V ∝ n) and is only valid for ideal gases.[11] Such an ideal gas can not
be liquefied like a real gas. For real gases there is among others the Van-der-Waals gas

equation to describe not only the behaviour in the gaseous phase, but also the liquid phase

as well as the phase transition between them.

5.6 First law of thermodynamics

Temperature is connected to the kinetic energy of the particles in the gas (see chapter

5.12). This internal energy U(p, V, T ) is a function of the parameters of the system:
pressure p, volume V and temperature T . These are state variables like described in 5.7.
A change in internal energy only depends on the states at the beginning and the end of

the process ∆U = UE − UA. This also means that it doesn’t matter how one got from

one state to the other.

The first law of thermodynamics states that the energy of a system does change if thermal

energy Q is added or when mechanical workW is performed on the system:

dU = δQ↙ + δW↙ (5.10)

This means that for an isolated systems, in which we do not add thermal energy or do

work on, the energy is constant. Note that here we introduced the convention that work

done onto the system, or thermal energy added to the system is positive and the work the

system does on it’s surroundings is negative.

5.7 Thermodynamic systems

A thermodynamic system is a collection of particles in thermal equilibrium and is charac-

terized by so called state variables like volume V , temperature T , pressure p, entropy S,
number of particles N , amount of substance n and many more. In contrast heat Q and
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workW are not not state variables, but process functions, since they do not describe an

(equilibrium) state.

The different types of thermodynamic systems are characterized as follows.

Isolated systems

An isolated system has no exchange of matter or energy with its surroundings. It is

completely isolated and will stay in the thermodynamic equilibrium.

Closed systems

Closed systems have, like the isolated system, no exchange of matter with the surround-

ings. But they can exchange energy, for example with a thermal contact or by performing

work on each other.

Open systems

Open systems may exchange energy as well as matter with their surroundings.

5.8 Equipartition theorem

The equipartition theorem states that the mean energy of each molecule with f degrees
of freedom (number of independent motions that are allowed, e.g. moving in x,y and z

equals to 3 degrees of freedom) is given by

mean energy per molecule =
f

2
kbT. (5.11)

Thus the energy of an ideal gas with n moles of molecules is given by

U = nNA
f

2
kbT = n

f

2
RT. (5.12)

Using∆Q = nCV ∆T , we also find that CV = f
2R and therefore Cp =

f+2
2 R. Due to

quantummechanical effects, degrees of freedom can be ”frozen” out at low temperatures.

This means they cannot be excited and therefore don’t contribute to the inner energy.

This can be seen in figure 5.5.
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Figure 5.5: Specific heat of H2 (schematically). The y-axis corresponds to
f
2 = CV

R . The

vibration gives two degrees of freedon, since one can store energy in potential or kinetic

energy.[10]

5.9 Thermodynamic processes

In this chapter we look at different processes that change the system by doing/extracting

work onto it or by heating/cooling it. These processes are mostly characterized by the

variables they leave constant. The different processes in a p-V diagram can be seen in

5.6.

Isobaric processes

In an isobaric process the pressure is held constant. The work done on an expanding gas

from the outside is given by

W↙ =

ˆ Vb

Va

δW↙ = −
ˆ Vb

Va

pdV, (5.13)

where Va is the volume at the beginning and Vb at the end of the process. By using that

the pressure is constant over the whole expansion, we can take the pressure out of the

integral and get the total work

W↙ = −p

ˆ Vb

Va

dV = −p(Vb − Va) = −nR(Tb − Ta). (5.14)

By using the equipartition theorem, we can also find the change in internal energy∆U =
nCV ∆T and therefore, according to the first law of thermodynamics and the ideal gas

law, the heat exchanged is

Q↙ = ∆U −W↙ = nCV ∆T + nR∆T = nCp∆T. (5.15)
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Figure 5.6: Different processes in a p-V diagram. [12]

Isothermal processes

For isothermal processes the temperature is held constant (T = const.) and therefore,
according to the equipartition theorem, the internal energy is constant (U = U(T ) =
const). Using the ideal gas law we also find that the product pV = const as well. Since
we know that the internal energy remains constant, the first law of thermodynamics tells

us that the incoming heat is entirely converted to work:

Q↙ =

ˆ
δQ↙ =

ˆ
−δW↙ = −W↙ = W↗ (5.16)

Using the ideal gas law we can then calculate the work done by the system as

W↗ =

ˆ Vb

Va

pdV = nRT

ˆ Vb

Va

dV

V
= nRT ln

(
Vb

Va

)
(5.17)

Isochoric processes

In isochoric processes the volume doesn’t change (V = const.). As a consequence no
work is being done and therefore the first law of thermodynamics tells us

dU = δQ↙. (5.18)
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Therefore the change in energy is simply given by

∆Q↙ =

ˆ Tb

Ta

nCV dT = nCV ∆T. (5.19)

Adiabatic processes

If during a process the system does not exchange heat with the surroundings, one speaks

of adiabatic processes. This is for example the case when the system is thermally isolated

or when the process is so fast that the heat exchange with the surroundings is negligible.

We can write down the change in work and energy for the process

δW = −pdV = −nRT

V
dV (5.20)

dU = nCV dT. (5.21)

Since we know that there is no heat exchanged ∆Q = 0, we find that for any adiabatic
process nCV dT + nRT

V dV = 0. By dividing through nT and integrating we get

ˆ
CV

T
dT = −

ˆ
R

V
dV (5.22)

CV ln(T ) = −R ln(V ) + const. (5.23)

⇒ T = V
− R

CV + const., (5.24)

which is exactly

TV κ−1 = const. (5.25)

or equivalently

pV κ = const. (5.26)

T κp1−κ = const′. (5.27)

Where κ is the ratio κ =
Cp

CV
which implies R

CV
= κ− 1 (using equation (5.7)).
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5.10 Second law of thermodynamics

The first law of thermodynamics was about the exchange of energy with the surroundings.

The second law of thermodynamics is about the distribution of the molecules within the

volume of the system. The entropy of a system is a measure for the disorder in the system.

There are many formulations, but the most known one is

S = kb lnW, (5.28)

where S is the entropy andW the probability for the system to be in a given state. (To

be more precise it is the probability to be in a given macrostate defined by state variables.

For a better explanation you can have a look at [13].)

The second law of thermodynamics states that the entropy of a system can only increase

dS ≥ δQ↙

T
. (5.29)

There are also other formulations of the second law, like the one from Rudolf Clausius:

”Heat can never pass from a colder to a warmer body without some other change,

connected therewith, occurring at the same time.” [14]

or Lord Kelvin:

”It is impossible, by means of inanimate material agency, to derive mechanical

effect from any portion of matter by cooling it below the temperature of the coldest

of the surrounding objects.” [14]

The second law also splits processes up into those which are reversible and conserve the

entropy, and those which are irreversible and do not conserve entropy. For reversible

processes, the system can be returned to its initial state. For reversible processes we

therefore have

dS =
δQ↙

T
. (5.30)

There is also the third law of thermodynamics which fixes the entropy at absolute zero

S(0K) = 0. For more information have a look at [13].
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5.11 Heat engines

Heat engines do work by transferring heat between two reservoirs at different tempera-

tures. One can imagine it a bit like a water mill, where the water from the higher level

produces mechanical work by running to the lower level.

Heat engines can be characterized by the associated cycle, which is the closed curve on

a p-V diagram. There are many different heat machines, like conventional car engines,

but we will have a look at the theoretically most efficient process, the Carnot cycle. The

Carnot process, which is depicted in figure 5.7, features two isothermal and two adiabatic

processes.

Figure 5.7: The Carnot cycle with its two isotherms and two adiabats. The surface that

is enclosed by the Carnot process equals the total work done. [13]

To see how efficient the Carnot cycle is we have to write down the equation for every

step, shown in table 5.1.
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Table 5.1: The Carnot process.

step process T W Q

1: a→b adiabatic

compression

T2 → T1 δW↙
1 = nCV (T1 − T2) 0

2: b→c isothermal

expansion

T1 δW↗
2 = nRT1 ln

Vc

Vb
δQ↙

2 = nRT1 ln
Vc

Vb

3: c→d adiabatic ex-

pansion

T1 → T2 δW↗
3 = nCV (T1 − T2) 0

4: d→a isothermal

compression

T2 δW↙
4 = nRT2 ln

Vd

Va
δQ↗

4 = nRT2 ln
Vd

Va

Furthermore we know that TV κ−1 = const. during adiabatic processes

T2V
κ−1
a = T1V

κ−1
b (5.31)

T2V
κ−1
d = T1V

κ−1
c (5.32)

and if we divide the two equations, we get the condition

Va · Vc = Vb · Vd. (5.33)

With all of that we can define the Carnot efficiency

ηC =
work done

supplied heat
=

−δW↙
1 + δW↗

2 + δW↗
3 − δW↙

4

δQ↙
2

=
T1 − T2

T1
. (5.34)

The Carnot cycle defines a thermodynamic cyclic process to produce work with the high-

est achievable efficiency. All reversible heat engines between two heat reservoirs are

equally efficient as a Carnot engine operating between the same reservoirs.[14] Therefore

all real processes are less efficient

work done

supplied heat
= ηreal ≤ ηC =

Thot − Tcold

Thot
. (5.35)

It is also nice to see that the entropy for a fully reversible cycle does not increase:

∆S =

˛
dS =

˛
δQ

T
= 0 (5.36)

This is known as the Clausius equality for reversible processes.[15]
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5.12 Kinetic gas theory

In this chapter we look at how microscopic motion explains the macroscopic properties

of a system. Solving the problem exactly is impossible due to the huge number of parti-

cles within a macroscopic volume, but with some approximations we can model the real

system very accurately. The most important approximations are:

• The gas consists of very many, small particles and we approximate them as points,

so we can neglect the volume they take.

• All particles are identical.

• The particles move with a constant, random velocity.

A full list of the approximations can be found on Wikipedia[16].

Figure 5.8: Molecules move around in a volume with random direction and speed, indi-

cated by arrows.[17]

We look at a cube of side length L in which the particles are confined, like the one in

figure 5.8. When a particle hits the wall, the change in momentum in the direction (e.g.

x) is given by

∆P = Pbefore,x − Pafter,x = Pbefore,x − (−Pbefore,x) = 2Pbefore,x = 2mvx, (5.37)
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where P is the momentum. Further the particle hits any given wall periodically in time

with

∆t =
2L

vx
(5.38)

between collisions, which gives an average force onto the wall of one particle of

Fparticle =
∆P

∆t
=

mv2x
L

. (5.39)

This results in a total force onto the wall of

F = N · F̄particle = N
mv̄2x
L

, (5.40)

where the bar over the force and the velocity indicates mean values over all particles.

Since we do not have a bias in any direction, the average squared speed in any direction

should be the same

v̄2 = v̄2x + v̄2y + v̄2z = 3v̄2x. (5.41)

This leads to a pressure of

p =
F

L2
=

Nmv̄2

3V
, (5.42)

with a volume V = L3.

Comparing with the ideal gas law

pV =
Nmv̄2

3
= NkbT, (5.43)

and knowing that kb, m and N are constant, we see that the velocity squared is directly

connected to the temperature

kbT =
mv̄2

3
. (5.44)

By using this we can write down the average kinetic energy per particle

1

2
mv̄2 =

3

2
kbT, (5.45)

which we recognize as the equipartition theorem with particles having 3 degrees of free-

dom (they are able to move in x,y and z).
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5.13 Phase transitions

Ideal gases do not show any phase transitions (e.g. condensation), but real gases like de-

scribed in chapter 5.14 do. For every point in the p-T diagram, there is exactly one phase
that minimizes the energy. The system always tries to minimize this energy and there-

fore phase transitions happen when the system goes from one region to another. During

phase transitions the two phases coexist.

When a phase transition happens usually depends on the pressure as well as on the tem-

perature, as can be seen in figure 5.9. In the figure one can see the phase diagram of water,

with the freezing point at 0 °C and the boiling point at 100 °C for normal atmospheric

pressure. But with changing pressure, the necessary temperature to boil/freeze water gets

shifted and one can even get water that is under 0 °C cold.

Figure 5.9: Phase diagram of H2O. On the very left is the solid phase, in the middle the

liquid phase and on the right, extending all the way to the left at low pressure, is the the

gaseous phase. [18]

When a system transitions from one phase to the other, heat is either released to the
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surrounding (e.g. condensation) or taken from the surroundings (e.g. evaporation). This

heat is called the latent heat L and is usually found as specific latent heat Lm which is

normalized by the mass. Therefore one can calculate the heat Q needed to evaporate a

material only by knowing its mass and the specific latent heat

Q = mLm. (5.46)

This is of course only valid if the system is already at the right temperature.

5.14 Real gases

In this script we only looked at ideal gases, but just as an outlook we shall briefly discuss

real gases.

As a first approximation we can introduce two empirical parameters to the ideal gas law,

bringing us to the van der Waals gas:(
p+

an2

V 2

)
(V − nb) = nRT. (5.47)

The two terms are:

1) There is not only the outer pressure, but the interaction of the molecules is also

taken into account by the factor a.

2) The volume that the gas can move in is reduced by the volume the molecules

occupy. This is taken care of by the factor b.

The probably biggest advantage of using the van der Waals equation is that with this

model one can also take phase transitions into account, which is not included in the ideal

gas law.

5.15 Stefan-Boltzmann law

Every body radiates power in the form of electro-magnetic waves because of its temper-

ature. For example molten metals send out light in the visible range. The power radiated

per area by a black body (a body that absorbs all incoming light) is given by the Stefan-

Boltzmann law

P = σT 4. (5.48)
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σ is the Stefan-Boltzmann constant and is given by

σ =
2π5k4b
15c2h3

≈ 5.670× 10−8Wm−2K−4, (5.49)

where c is the speed of light and h is the Planck constant.
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Chapter 6

OSCILLATIONS

A physicist asks a mathematician to

help him check the turn signals of his

car. The physicists enters the car and

activates the turn signal. He asks the

mathematician whether the signal

works. The reply: “Works, doesn’t

work, works, doesn’t work, works,

doesn’t work, ...”

Mathematicians normally argue that the roles

are reversed.

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Harmonic Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Beyond Harmonic Oscillations . . . . . . . . . . . . . . . . . . . . . 170
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6 Oscillations

6.1 Introduction

Important sources for this chapter include [19] and [20].

The term oscillation generally refers to the (periodic) variation of some physical quantity

with time around a point of equilibrium.

There is no strong consensus among physicists for a proper definition of oscillations.

Some prefer using broader definitions, to the point of including phenomena that do not

”oscillate” in the common sense, while some others prefer a narrower definition, with

the risk of excluding movements showing the characteristic ”back-and-forth” variation.

Damping is the common example of a phenomenon of the ”grey zone”, more on this

later.

A way of physically defining oscillatory systems (oscillators) is to require that the varying

quantity has an equilibrium value, and that the system naturally tends to go back to that

value if taken out of equilibrium by an external perturbation.

From that definition, we already see that oscillators are very common in physics, virtu-

ally in any domains; oscillations, in particular, happen each time the considered quantity

(which can be almost any mathematical quantity: a position, the strength of a field, the

voltage of an alternating current circuit, etc.) is bound to a potential with a local minimum.

In the following, we will take a more precise look at simple oscillations, notably harmonic

oscillations and their extensions - damping and resonance.

As a preamble, let us first define periodicity. This term refers to the idea of having some

time-dependent quantity that takes the same values over and over, in a regular pattern.

For example, considering the time-dependent variable x(t), we call it periodic if we can
find some T such that

x(t) = x(t+ T )

for all times t.

As can be seen, if we find such a T , then 2T also satisfies the criterion, as well as any

multiple of T . Thus, we define the period of a periodic system as the (positive) smallest

such T .

It is clear from this definition that the period T has the units of an interval of time, thus

is given in s (seconds) in the SI, and measures the time it takes an oscillator to accomplish

an oscillation cycle.

We also define the frequency f (also commonly refered to as ν): it is the inverse of the
period, i.e. 1/T , and it measures how many oscillation cycles an oscillator accomplishes
in a time unit. Its SI unit is s−1, also called Hz (Hertz).

162



6.2. HARMONIC OSCILLATIONS

6.2 Harmonic Oscillations

Harmonic oscillations are considered the most simple type of oscillation. Despite this (or

more probably, because of this), it also provides a convenient model for most types of

(more complicated) physical oscillations. As is often the case, mathematical and physical

simplicity come together.

Mathematically, a quantity x(t) following a harmonic oscillation has the following form:

x(t) = A sin(ωt+ ϕ) , (6.1)

that is, it simply follows a sine function, up to some scaling and shifting factors:

• A is called amplitude, and has the same units as x. It corresponds to the maximal
value of x.

• ω is called angular frequency (sometimes also pulsation) and corresponds to 2πf . Its
units are that of an angle over a time, i.e. radians per second in the SI. Mathemat-

ically, it is a scaling factor that allows transforming the parameter t into an object
of the right dimension for the sine function to absorb, i.e. ωt should have units of
an angle.

• ϕ is called phase and has units of an angle (for the same reason as just explained for
ωt), usually given in radians.

Note:

• some textbooks refer to 2A as the amplitude. Be careful!

• another definition can be created using a cosine instead of a sine. Those definitions

are equivalent and only differ by a shift of π/2 in the phase.
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It is easy to check that harmonic oscillations are periodic, it simply follows from the

mathematical periodicity of the sine function:

x(t+ T ) = A sin (ω(t+ T ) + ϕ)

= A sin (ωt+ ωT + ϕ)

= A sin (ωt+ 2πfT + ϕ)

= A sin (ωt+ 2πT/T + ϕ)

= A sin (ωt+ ϕ+ 2π)

= A sin (ωt+ ϕ)

= x(t) .

6.2.1 Harmonic Oscillations, Spring/Mass Systems and Differential
Equations

At this point, we want to look at a first concrete example of harmonic oscillator and try

to relate the physical equations of such a system with the mathematical form of harmonic

oscillations described above.

The simplest example of harmonic oscillator is perhaps the spring/mass system, where an

extremity of the (massless) spring is fixed and the other is attached to a free massm. We
will only consider here the 1D case, where the mass can only move along one dimension.

We do not take any gravitational force into account.

We will later see that by accounting for further interactions (friction, driving by an external

movement, etc.) we will be able to generalize this simple example and therefore study

various interesting oscillatory cases.

Newton’s equation for the mass is as follows:

∑
i

Fi = ma .

The only force acting onm is the restoring force of the spring (Hooke’s law):

F = −kx ,
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k
m

Figure 6.1: Spring-mass system. Adapted from [21].

where k is the spring constant (defining its stiffness) in N·m−1 (equivalent to kg·s−2).
The origin of x is taken at the point of equilibrium of the spring.

Thus we have, by reordering and using that the acceleration is the second time derivative

of the position (a = ẍ):

ẍ+
k

m
x = 0 . (6.2)

Such an equation is called a homogeneous second-order linear constant coefficient ordinary differential

equation:

• differential, because it contains both a function (x(t)) and some of its derivatives
(ẍ(t)), and the goal is to determine x(t);

• ordinary, because the function x depends on only one variable t;

• constant coefficient, because the function and its derivatives only show up with con-

stant coefficients in the equation;

• linear, because the function and its derivatives only show up with degree 1 in the

equation (no square or such);

• second-order, because the highest derivative of x present is the second one;
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• homogeneous, because there is no ”free” constant or function of t in the equation (all
terms contain an x or one of its derivatives at least).

Due to Newton’s law, most of mechanics revolve around finding solutions to second-

order differential equations.

Our hypothesis above was that spring/mass systems are harmonic oscillators, i.e. we

believe that such systems perform harmonic oscillations (with the variable quantity being

the position of the mass).

To verify this, we have to check whether 6.1 and 6.2 are compatible, i.e. whether 6.1 is a

solution of 6.2.

Let’s insert 6.1 into 6.2:

x(t) = A sin (ωt+ ϕ)

ẋ(t) = ωA cos (ωt+ ϕ)

ẍ(t) = −ω2A sin (ωt+ ϕ)

ẍ+
k

m
x = −ω2A sin (ωt+ ϕ) +

k

m
A sin (ωt+ ϕ)

=

(
−ω2 +

k

m

)
A sin (ωt+ ϕ)

!
= 0 .

For the last equality to hold for all t, we need to have

−ω2 +
k

m
= 0 ,

i.e.

ω =

√
k

m
.

Thus, a spring/mass system with the above defined characteristics does behave as a har-

monic oscillator with angular frequency
√
k/m.

We can also conclude that any system with a single force −Kx for some constant K
acting on it is harmonic. Such a system has a potential V (x) = 1

2Kx2, which also
suffices to characterize it.
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6.2.2 Further Examples

Beyond the spring/mass, other simple systems represent harmonic oscillators:

• Torsion Pendulum

φ

κ

J

Figure 6.2: Torsion pendulum. Adapted from [22].

Hooke’s law also holds for the angular positionϕ of an object of moment of inertia
J attached to a torsion spring of angular spring constant κ (with the torqueM ):

M = −κϕ ,

thus with Newton’s law for rotations:

∑
i

Mi = Jα

ϕ̈+
κ

J
ϕ = 0 .

And we again find a solution of the form ϕ(t) = Φ sin
(√

κ/Jt+ θ
)
.
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• Simple Pendulum

φ m

l
g

Figure 6.3: Simple pendulum.

A simple pendulum is composed of a (massless) rod of length l fixed at one of its
extremities to a pivot, and attached at the other end to a moving mass.

In the common case, one restricts oneself to the 2D. Using the angle ϕ of the rod
with the vertical, one can then parametrize the system with one single variable -

thus the system has one single degree of freedom.

Two forces act on the mass, the gravity ~FP and the tension ~FT .

Seen from the pivot point, the tension produces no torque (because of its collinear-

ity with the rod,MT = 0), while the weight of the mass creates

MP = −mgl sin(ϕ)

(the minus sign indicating that the torque opposes itself to the deviation of the rod

from the vertical).

Thus we get, using Newton’s law in rotationary form (we assume the mass to be

point-like, so J = ml2 by Steiner’s theorem):
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ϕ̈+
g

l
sin(ϕ) = 0 . (6.3)

As can be seen, we again find a homogeneous second-order constant coefficient

ordinary differential equation, but this time it is not linear, due to the sine!

Therefore the simple pendulum is not harmonic; as can be shown, 6.1 is not a

solution of 6.3.

However, in the case of small oscillations, the angle ϕ remains itself small and we
can linearize the equation. This is because of the Taylor expansion of sine:

sin(x) = x− x3

6
+

x5

120
+O(x7) ,

which allows to approximate sin(x) ≈ x for small x.

Thus, for ϕ � 1 (with ϕ in radians), we have

ϕ̈+
g

l
ϕ ≈ 0

and we can say that the pendulum is approximatively harmonic with angular fre-

quency
√
g/l. Note that the condition ϕ � 1 is necessary for the approximation

to hold!

6.2.3 Importance of Harmonic Oscillations

The fact that non-harmonic oscillations can be approximated in the vicinity of equilibrium

points by harmonic oscillations is general, and is the reason why harmonic oscillations are

so common and important.

More concretely, if we have a system with potential V (x) we can Taylor-expand (say
around 0):

V (x) = V (0) + V ′(0)x+
V ′′(0)

2
x2 +O(x3) .

If the potential has a local minimum at 0, we have V ′(0) = 0 and V ′′(0) > 0, thus for
small x we can neglect the higher orders and get
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V (x) ≈ V (0) +
V ′′(0)

2
x2 ,

which is the potential of a harmonic oscillator (V (0) is arbitrary and we can redefine V
in order to get rid of it). In terms of force we get

F = −∂V

∂x
= −V ′′(0)x

which is obvious linear in x (V ′′(0) is the value of the second derivative at 0 and therefore
simply a number).

6.3 Beyond Harmonic Oscillations

Here we will consider our mass-spring system, but accounting for further phenomena.

In fact, harmonic oscillations represent an idealized case. In reality, we often have two

more ingredients in oscillatory systems:

• Damping

Damping occurs everytime we have friction in the system, opposing the motion.

• Forcing

Forcing (also called driving force) appears when an external element interacts with the

oscillating system. Depending on this interaction, this can typically greatly increase

or reduce the oscillation amplitude.

In this script we will consider the following simple situation only: linear damping (with a

force proportional to the velocity,−bv) and sinusoidal forcing (with an external excitation
B sin(Ωt)).
Newton’s law gives for such a system:

−kx− bv +B sin(Ωt) = ma ,

which leads to the (in general inhomogeneous due to the forcing) differential equation:

ẍ+ 2ζωẋ+ ω2x =
B

m
sin(Ωt) ,
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where ζ = b
2
√
mk

is called the damping ratio.

The full mathematical treatement of this differential equation is beyond the scope of this

script (it is partly covered in the analogous case of oscillatory circuits in the AC part), so we

only provide the solutions without resolution steps below. We distinguish the following

cases:

• B = 0

This is the free case, i.e. there is no forcing. The behavior of the system depends

on the damping ratio:

– ζ = 0

There is no damping here, thus this is the common harmonic oscillator, as

discussed above.

As soon as ζ gets bigger than 0, the oscillator looses energy in the damp-
ing (friction) and is not periodic anymore, but rather tends to go back to its

equilibrium point and stop there.

– 0 ≤ ζ < 1

This case is called underdamped and corresponds to solutions of the form

x(t) = Ce−ζωt sin(ω̃t+ ϕ̃) ,

with C and ϕ̃ arbitrary constants depending on the initial conditions. As

can be seen, the movement represents a sinusoidal modulated (squashed) by

an exponential decay. It is not periodic, but one can define ω̃ as a so-called
pseudoperiod for the oscillation. We have

ω̃ = ω
√
1− ζ2 .

– ζ = 1

This one is the critically damped case, with solutions

x(t) = (C1t+ C2)e
−ζωt ,

where C1 and C2 are again arbitrary constants depending on the initial con-

ditions.
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The system here approaches its equilibrium point in the fastest possible way,

which makes it technically useful in real-world applications, such as springs

for automatically closing doors (that should close fast but without oscillating)

or shock absorbers on vehicles.

– ζ > 1

Here we have the overdamped case, with the system going back to its point of

equilibrium without oscillating, but slower that in the critical case described

above.

The solutions have the form

x(t) = C1e
−
(
ζ−

√
ζ2−1

)
ωt

+ C2e
−
(
ζ+

√
ζ2−1

)
ωt
,

with C1 and C2 defined in an equivalent way as above.

Figure 6.4: Linear damping with various ζ values. Adapted from [26].

• B 6= 0

In the presence of forcing, we will have to separate to cases:

– We will first have a transitory solution depending on initial conditions.

– Then, we will have a steady-state solution depending only on the forcing.

172



6.3. BEYOND HARMONIC OSCILLATIONS

The general solution is a sum of both transitory and steady-state solutions; here we

will consider the steady-state solution only. It has the form

x(t) =
B

m
√
4ω2Ω2ζ2 + (ω2 − Ω2)2

sin(Ωt+Φ)

with some phase Φ that we won’t discuss in this script. The interesting part is the

square root Z =
√
4ω2Ω2ζ2 + (ω2 − Ω2)2.

For ζ < 1√
2
, we will have aminimumofZ for a forcing frequencyΩr = ω

√
1− 2ζ2,

thus the amplitude of the oscillation for that case of forcing will be strongly in-

creased. In the undamped case (ζ = 0), the amplitude in that case will even diverge
to infinity, meaning that for that forcing frequencyΩr (called resonance frequency) the

forcing will continuously add energy to the system.

Ω/ω

x(Ω)
x(0)

Figure 6.5: Amplitude resonance with sinusoidal forcing. The maxima line corresponds

to Ωr . Adapted from [25].
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6.3.1 Example of Forced Oscillating Systems

One of the most common examples of forcing is the swing: one has to furnish energy

at the right time (i.e. with the right frequency) for the swing to increase its oscillation

amplitude.

Conversely, any sufficently little damped mechanical system has a resonance frequency

that can be used to bring it to strongly oscillating, even with a relatively small amplitude

driving interaction.

During the engineering of anymechanical product, resonance has to be taken into account

in order to prevent unwanted oscillations that could even make it break. Among others,

vehicles parts should not be brought to resonance by the vibrations induced by the engine.

Buildings are another type of mechanical systems where resonance has to be well con-

trolled. Modern bridges and skyscrapers often contain mechanical parts designed to ab-

sorb oscillations.

One of the most well-known examples of so-called resonance disaster is the destruction of

the Tacoma Narrows Bridge in 1940 due to wind passing through its structure, bringing it to

twisting and eventually leading to its collapse.

Figure 6.6: The Tacoma Narrows Bridge collapsing [23]. See also [24].
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7 Waves

7.1 Introduction

In the previous chapter, we spoke about oscillations. Now we can ask ourselves the

question ”what happens if we couple many oscillators together into a network, so that

oscillations on one of them also influence its neighbors?”

What happens is that the perturbation will little by little, neighbor after neighbor, ”travel”

across the oscillators network. Such a propagating perturbation is called progressive wave.

Most waves are progressive waves, but there are some counterexamples such as standing

waves.

An exact definition of waves is difficult to construct, but one can anyways say that waves

are perturbations (variations of some quantity, typically in an oscillating way) in space and

time. This is the main difference with oscillations, which occur in more or less abstract

quantities with time: waves add the idea of space.

Mathematically, waves are often represented as functions of time and spaceu(~r, t) (u(x, t)
in the 1D case). Sometimes the oscillations composing the wave also have a determined

direction in space, thus the wave in this case is represented by a vector function ~u(~r, t).

We will not go into much details in this script, but the temporal evolution of those func-

tions is fixed by the wave equation, which in 1D has the form

∂2u(t, x)

∂t2
= v2

∂2u(t, x)

∂x2
. (7.1)

This is a partial differential equation (as opposed to an ordinary DE), meaning that it con-

tains partial derivatives (u is function of multiple variables and gets differentiated - such
as in ∂u

∂t - with respect to one single of those variables at a time, by letting other variables

constant). This is a direct consequence of our letting space play a role in the description of

waves, in opposition to the ordinary differential equations we saw for oscillations, where

only time plays a role.

The v in the wave equation can already let us think about the velocity of a wave, which
is in general an important property. Sometimes c is used instead of v.

Waves can be seen as generalizations of oscillations, so in the following we will begin by

taking a look at general properties of waves - which may recall us about oscillations. Then

we will talk about their propagation and the media associated. Finally the interference

phenomenon (two or more waves interacting with each other) will be discussed.
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7.2 Harmonic Waves

We will provide a more in-depth description of waves using the example of harmonic

waves. Those are waves that can be described using a sinusoidal function:

u(x, t) = A sin(ωt− kx+ ϕ) . (7.2)

As can be seen, this mathematical form is quite similar to the one we used for harmonic

oscillations, with the difference of the argument of the sine gaining a spatial term. Some-

times, the reversed convention is used, u(x, t) = A sin(kx−ωt+ϕ′). Both conventions
are equivalent, up to a change in the phase from ϕ to ϕ′. Here we use a positive time and
a negative space, as it more directly relates to the case of oscillations.

λ

−A

A

u(x, 0)

u(x,∆t)

x

u

Space

T

−A

A

u(0, t)

u(∆x, t)

t

u

Time

Figure 7.1: A plane wave u(x, t) (with ϕ = 0) represented along each axis, with the other
set first to 0, then to some small value (dashed plot). Both plots are very similar, up to the
choice of the origin.
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As was the case before, u as a function of t (provided that x is held constant) has a
sinusoidal form. This means that, at any given point, the ”quantity the wave moves in”

oscillates with time. But it is also to be noted that the spatial coordinatex has an equivalent
place in the formula as the temporal coordinate t. Thus the other way round also holds: at
any given time, the ”quantity the wave moves in” oscillates with space. It is therefore very

important, when looking at a plot describing the amplitude of a harmonic wave, to check

whether it drawn against time or space. In both cases the figure will appear sinusoidal.

When talking about oscillations, we defined ω as the angular frequency, a measure of the
variation ”rapidity” of the quantity with time. In the formula above, x has a similar role
as t and it also has some factor k associated, called wavenumber. And again similarly to
the time, where we defined the period T = 2π/ω as the time interval between (say) two
peaks of the oscillation (or wave, at a given point), we can define the wavelength λ = 2π/k,
which is nothing but the space interval (i.e. the distance) between (say) two peaks of the

wave (at a given, fixed time).

From this, we can derive a very important equation by inserting 7.2 into 7.1:

∂u

∂t
= ωA cos(ωt− kx+ ϕ)

∂2u

∂t2
= −ω2A sin(ωt− kx+ ϕ)

∂u

∂x
= −kA cos(ωt− kx+ ϕ)

∂2u

∂x2
= −k2A sin(ωt− kx+ ϕ)

−ω2A sin(ωt− kx+ ϕ) =
∂2u

∂t2

!
= v2

∂2u

∂x2

= v2(−k2)A sin(ωt− kx+ ϕ)

⇒ ω2 = v2k2

⇒ v = ω/k = λ/T = λf ,

where we assume v, ω and k to be positive (which is mostly a matter of convention).
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This relates the temporal and spatial characteristics of waves through a parameter, the

velocity of the wave (which is not very surprising, considering that velocities express in

fact the division of a space interval by a time interval).

7.3 Waves in 3D

7.3.1 Waves as Functions of 3D Spatial Coordinates

When going from waves in one dimension to three, the first element to look at is the fact

that now the function u(x, t) is modified into u(~r, t).

In order to adapt our formula for harmonic waves, we define ~k, the wavevector and write:

u(~r, t) = A sin(ωt− ~k · ~r + ϕ) . (7.3)

While ~k still indicates the ”rapidity” of variation of the wave with space (through its norm
k = |~k|), it now also has a direction, which actually is the direction of propagation of the
wave itself.

The formula 7.3 creates so-called planar waves: at a given time, all points in planes perpen-

dicular to the wavevector share the same oscillation state.

7.3.2 Waves as 3D Functions, Transversal and Longitudinal Waves,
Polarization

Depending on the ”quantity the wave moves in”, not only the oscillations defining the

wave can depend on all the three spatial coordinates, but the oscillations themselves can

have a well-defined direction in space, which is mathematically indicated by a vectorial func-

tion ~u(~r, t). In the harmonic case, in general we simply modify 7.3 by using a vectorial
amplitude ~A to take this oscillation direction into account.

As we saw before, waves in 3D have a particular direction determined by ~k, the propa-
gation direction. For waves whose oscillations themselves have a well-defined direction,

we have two possible cases:

• The oscillation direction can be perpendicular to the propagation direction, in

which case the wave is named transversal.

• Or it can be parallel, and we have a longitudinal wave.
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~k

~k

Figure 7.2: Wave propagation in 3D. Top: transversal, vertically polarized wave, oscilla-

tions happen in the vertical direction, thus perpendicularly to the direction of the wave

(given by ~k). Bottom: longitudinal wave, oscillations are parallel to ~k.

In the first case, even for a fixed propagation direction the oscillation direction is not

unique, but can be freely chosen in the plane perpendicular ~k. We thus define the po-
larization, which is the oscillation direction. Two transversal waves going in the same

direction can nevertheless have different polarization states.

7.4 Waves Propagation

In the introduction to the present chapter, we said that waves are perturbations travelling

through a ”network” of coupled oscillators. Later on, we used the expression ”quantity

the wave moves in” in several sentences. It is now time to try answering the question

”what does a wave move in?”, i.e. find what is the propagation medium of waves.

180



7.4. WAVES PROPAGATION

This in turn depends on the type of wave, and in particular on the nature of the oscillators.

In the following, we will introduce a couple of examples of wave forms as concrete cases

for the different properties that were discussed in the previous sections. This will allow

us to also get an insight into the different propagation media.

7.4.1 Sound

Sound is made of so-called mechanical waves, i.e. waves whose oscillators are positions

of matter particles - be it in a solid, liquid or gas. In the case of sound, those waves

are longitudinal, so matter particles get pushed away in the direction of propagation by

previous ones, where they hit next ones, thus propagating the wave further and letting

them bounce back (in average) to their original position.

Like any mechanical waves, sound cannot propagate in the absence of physical medium

(like in vacuum). Even if an enormous asteroid closely passes by your spacecraft in outer

space, you have no chance of hearing anything! (Unless the ship actually gets hit by some

part of the asteroid...)

The frequency of sound is directly related with the perceived height - a higher frequency

leading to a higher pitch. It also leads to a shorter wavelength, as the sound travels at

approximately the same velocity in a given material (round 343m·s−1 in air) under given
conditions, independently of its frequency.

7.4.2 Light

While light also composes itself of waves - and while we also can sense it (in some cases),

one could not imagine anything more different from sound than light!

The first fundamental difference between them is that light is not a material wave, i.e. it is

not made of matter particles brought to oscillating. Moreover, it does not need any matter

to propagate (the question on the nature of a hypothetic physical medium - ”luminiferous

aether” - for light propagation actually participated in the development of relativity).

While light does not need any material to propagate, the presence of a material can have

an impact on its propagation, such as changing its velocity, direction, etc. We will talk

about these general effects later on.

We said that waves travel on ”networks of oscillators” so, even for light there has to be

something supporting it. This ”something” is the electromagnetic field, and thus light is ac-

tually an electromagnetic wave. Concretely, this means that light beams are perturbations

across space that bring electric and magnetic fields to locally oscillate.

In most cases (and most importantly in vacuum), light is a transversal wave. Thus, in any

point on the light path, both ~E and ~B are perpendicular to ~k ( ~E and ~B are actually also
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perpendicular to each other).

As a transversal wave, light is subject to polarization, given by the direction of the electric

field. The existence of polarization filters, which can block light depending of its po-

larization orientation, is crucial for many technologies in both research and engineering;

but it is also at the origin of the most common 3D cinema system, where two images

are projected on the screen simultaneously, with perpendicular polarizations. Eyeglasses

similarly have two lenses with corresponding polarization filters, so that each lens exactly

lets one of the images pass through while blocking the other one.

Wavelength and frequency of electromagnetic waves cover a huge range of magnitude

orders, which also leads to very different types of interaction with matter.

Buildings Humans Butterflies Needle Point Protozoans Molecules Atoms Atomic Nuclei

104 108 1012 1015 1016 1018 1020

1 K 100 K 10,000 K 10,000,000 K

Penetrates Earth's
Atmosphere?

Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray

103 10−2 10−5 0.5×10 −6 10−8 10−10 10−12
Radiation Type

Wavelength (m)

Approximate Scale
of Wavelength

Frequency (Hz)

Temperature of
objects at which

this radiation is the
most intense

wavelength emitted
−272 °C −173 °C 9,727 °C ~10,000,000 °C

Figure 7.3: Electromagnetic spectrum. [28]

7.4.3 Seismic Waves

Like sound, seismic waves - waves created by geological events in the inner of the Earth,

such as earthquakes - are material waves. Unlike them, though, they are not necessarily

longitudinal. In fact, single events often create a bunch of seismic waves of different

types - both longitudinal and transversal, but also waves travelling through the Earth or

across its surface, etc. All those different types come in general together with different

wavelengths, frequencies and velocities, which also depend on the propagation material.

In turn, seismology can take advantage of all these properties to better understand the

Earth’s inner structure as well as to study geological risks.
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7.4.4 Transport

While they may transport energy, it is important to note that waves do not transport

matter (not taking into account the small local displacements in material waves).

This may seem counterintuitive, for example in waves on a water surface: the waves peaks

move across the surface, but the water particles themselves only move up and down. Thus

an object floating on the water - such as a duck - is itself brought to (almost) only oscillate

vertically.

7.4.5 Doppler Effect

Doppler Effect is a phenomenon occurring when the emitter (an object creating a wave)

and/or the receiver (an hypothetic object observing wave oscillations) of a wave move

with respect to each other and, in the case of material wave, with respect to the propaga-

tion medium.

In this script we will restrict ourselves to the 1D case for sound waves.

Let’s consider an emitter travelling with velocity vem and creating a sound wave of fre-
quency fem and velocity v. Let’s also assume that a receiver travelling with velocity vre is
at a distance d from the emitter at a given time (which we will set to zero together with

the emitter’s initial position for the sake of simplicity).

Note that we do not make any assumption on the signs of vem and vre but, as we are
considering the 1D case, each object is moving either directly towards or away from the

other one. We will simply define vem and vre as positive when they are in the same
direction as the vector going from the emitter to the receiver, as negative otherwise.

Moreover, both vem and vre are relative to the medium.

Let t1 be the time taken by the sound emitted at the initial instant to arrive to the receiver.
We have:

vt1 = d+ vret1 ,

thus t1 = d/(v − vre). Similarly, let t2 be the time taken by the sound emitted after a
period of the sound (1/fem) to arrive to the receiver, so:

vt2 = d− vem
1

fem
+ vre

1

fem
+ vret2 ,

so we have t2 =
(
d+ (vre − vem)

1
fem

)
/(v − vre).
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d

emitter receiver

v v vem re

Figure 7.4: Emitter and receiver. Due to the Doppler effect, the frequency of the sound

will be different for the emitter, the receiver and a neutral observer at rest with respect to

the medium.

From t1 and t2 we can calculate the frequency of the sound fre as observed by the receiver,
as a function of fem (t2 − t1 representing the difference in periods between the sound
received and emitted):

fre =
1

t2 − t1 +
1
fem

=
1

vre−vem
v−vre

1
fem

+ v−vre
v−vre

1
fem

=
v − vre
v − vem

fem .

Note: the signs in the fractions depend on the way we defined the velocities. They vary

among textbooks and one should be careful when applying the formula.

The Doppler effect typically leads to a higher pitch for approaching source and lower

when it recedes from the observer. An everyday example is the siren of emergency vehi-

cles: one can well hear the frequency drop when the vehicle passes by.

It can also be used in technical applications, by sending a sound signal and analysing the

frequency of the signal reflected back: radars and blood flow imaging in cardiology are

typical uses.

7.5 Waves Propagation at Interfaces

Under this title we understand phenomena where, in contrast to what we saw before

with (implicitely assumed) homogeneous, isotropic and infinite propagation spaces, there

is some element in the path, preventing the wave from freely propagating further.

An important principle for understanding those phenomena is Fermat’s principle: it states

that light (and it can be generalized on most waves) always ”chooses” the locally fastest
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way between two points, i.e. the way that it takes the shortest time for the wave to travel.

We will see later on why this ”locally” is important, when studying reflections.

7.5.1 Reflection

Reflection happens when a wave bounces back at an interface between its propagation

medium - be it material or not - and some material element.

Supposing that the element’s interface with the medium is sufficiently smooth, we can

define the incidence angle ϕi and reflection angle ϕr between the surface normal and the re-
spective path elements.

Using Fermat’s principle, it can be shown that this is exactly the case when both angles

are equal, ϕi = ϕr. We also easily see the local aspect of the principle: of course this
path is not the globally shortest one (a straight line between the extremities of the path

would be shorter), but of the continuum of paths going from one point to the other while

hitting the interface, it is the shortest one.

A straightforward way to see how Fermat’s principle implies equal angles is to imagine that

the mirror does not exist, but that instead one of the extremities of the path is mirrored,

i.e. on the other side of the mirror’s plane. Then it is clear that to minimize the distance,

one has to consider the straight line from that mirrored extremity to the other, unmodified

one. And it is also directly visible that the equality of angles should be respected in that

case.

7.5.2 Refraction

Refraction occurs when a wave arrives at an interface between to propagation media, which

typically have different properties, such that the wave has a different propagation velocity

in each of them.

In order to take these velocities into account, one defines - in case of light - the refrac-

tive index n of a medium as the fraction of the vacuum velocity c by the velocity in the
medium v: n = c/v. The refractive index is slightly dependent on the light wavelength,
which is one of the main reasons for chromatic aberration in refractive optical parts. We will

nevertheless forget this detail in this script.

As can be shown using Fermat’s principle, the angles of incidence ϕ1 and of refraction

ϕ2 at the interface between media of refractive indices n1 and n2 are related by Snell-

Descartes law:

n1 sin(ϕ1) = n2 sin(ϕ2) .
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A

B

Ã

ϕrϕi

ϕ′
i

Figure 7.5: Reflection on a plane surface of a wave travelling fromA toB. By constructing
the image Ã of A by symmetry w.r.t. the plane, one sees that ϕi = ϕ′

i as well as ϕr = ϕ′
i

(Fermat’s principle requiring ÃB be a straight line). Hence ϕi = ϕr .
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A
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n2
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ϕ′
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ϕ′
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n2

A′′
ϕ′′
1
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n2

Figure 7.6: Top: Refraction at a medium interface of a wave travelling fromA (in medium
with refraction index n1) to C (index n2). Here, n2 < n1 is implied. Middle: limit case

with ϕ′
2 = π

2 . ϕ
′
1 is thus called the critical angle. Bottom: For ϕ

′′
1 > ϕ′

1, no refraction

is possible anymore, only reflection. This phenomenon is therefore called total internal

reflection.
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7.5.3 Diffraction

Diffraction is what happens when part of the wavefront (the most advanced part of the

perturbation, with all points in the same oscillation state) hits an object: secondary waves

are formed at the hitting points, which make the wave ”turn around” the object, following

its curvature a bit. For the diffraction to have an important effect, the wavelength of the

wave has to be of roughly the same scale as the object in the way. This is typically the

reason why we can hear a sound without actually seeing its source, because the objects in

the way are at our scale - which is roughly also the sound’s scale - but are much too big

for visible light to get diffracted enough to come to us.

Figure 7.7: Diffraction of a plane wave passing through a slit. Notice how the diffracted

wave is approximately circular and thus also reaches zones (even if attenuated) that are

”hidden” sideways of the slit, along the barrier. [27]

7.6 Multi-Waves Phenomena

Until now, we only considered single waves going through space. However, as waves

are simply perturbations, nothing forbids two waves from being at the same place at the

same time. Thus we have to consider the so-called wave superposition, or wave interference.

The main idea here is the superposition principle, which states that, given two waves u(~r, t)
and v(~r, t) of same type (i.e. sharing the same oscillators), the perturbation resulting from
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their cumulated effect is simply their algebraic sum u(~r, t)+v(~r, t). The same goes with
vectorial waves as well.

The resulting perturbation can have different forms depending on what the original waves

look like, but the most important property is that the result is again a wave. In the fol-

lowing, we will study the most common and interesting interference phenomena for 1D

harmonic waves.

In general, we will therefore look at

u(x, t) + v(x, t) = A1 sin(ω1t− k1x+ ϕ1) +A2 sin(ω2t− k2x+ ϕ2)

and try to understand what is going on depending of the relation betweenA1 andA2, ω1

and ω2, k1 and k2, and ϕ1 and ϕ2.

7.6.1 Same amplitude, frequency and wavenumber

The simplest case is when A1 = A2 = A, ω1 = ω2 = ω and k1 = k2 = k, i.e. the
waves are very similar but can simply be shifted by some phase. For the sake of simplicity,

we will set ϕ1 = 0 and ϕ2 = ϕ.

We can use the sine addition formula to rewrite the interference:

u(x, t) + v(x, t) = A sin(ωt− kx) +A sin(ωt− kx+ ϕ)

= 2A sin
(
ωt− kx+

ϕ

2

)
cos
(ϕ
2

)
.

As can be seen, the resulting wave is again harmonic, with the same frequency and

wavenumber. Depending on ϕ, its amplitude can vary:

• For ϕ = 0,±2π,±4π, etc., the amplitude is maximal and equal to 2A. This is the
perfect addition of two identical waves.

• For ϕ = ±π, ±3π, etc., the amplitude is null, i.e. the waves are exactly out of
phase and thus completely annihiliate.
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−A
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ϕ = 0:

−A

A xϕ = π
4 :

−A

A x
ϕ = 3π

4 :

−A

A xϕ = π:

Figure 7.8: Superposition (thick plot) of two waves u(x, t) (dashed) and v(x, t) (dotted)
with same amplitude, frequency and wavenumber and a phase difference ϕ for v with
respect to u. Due to the coefficient cos(ϕ2 ) in the amplitude, the amplitude of the resulting
superposition wave can be bigger than those of the original waves (positive interference)

or smaller or even null (negative interference).

7.6.2 Same amplitude and frequency, opposite wavenumber

This situation corresponds to two identical waves propagating in opposite directions, so

A1 = A2 = A, ω1 = ω2 = ω, k1 = −k2 = k. We can set ϕ1 = ϕ2 = 0 without loss
of generality.

Again using the addition of sines:

u(x, t) + v(x, t) = A sin(ωt− kx) +A sin(ωt+ kx)

= 2A sin(ωt) cos(kx) .

Very interestingly, by summing the waves we get a separation of ωt and kx, which are
therefore uncoupled. This means that the oscillations of the resulting wave are static

- some places will constantly have zero amplitude due to the cos(kx) (”nodes”) while
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others will have maximal amplitude (”anti-nodes”). Similarly, at some times the whole

wave will have zero amplitude everywhere due to the sin(ωt), etc.
Such a wave, that does not seem to travel along its medium, is called a stationary wave or

standing wave. It is quite common, as it forms everytime some wave gets reflected back

and interferes with itself.

Note that the distance from node to node and from antinode to antinode is λ
2 (for space)

and T
2 (for time).

−2A

2A

−2λ −λ λ 2λ

x

w

Space

w(x, 0)

w(x,∆t)

w(x, 2∆t)

−2A

2A

−2T −T T 2T

t

w

Time

w(0, t)

w(∆x, t)

w(2∆x, t)

Figure 7.9: The resulting stationary wave w(x, t) = u(x, t) + v(x, t) represented in
both space and time. In both plots, nodes and antinodes remain at the same x, resp. t
coordinate, hence ”stationary”. For our choice of wave equation andϕ’s, spatial antinodes
are at nλ

2 , while temporal nodes are at
nT
2 , n ∈ Z. Note that w(x, 0) = 0 for all x’s.

7.6.3 Slightly different frequencies

Another interesting case is A1 = A2 = A, k1 = k2 = k but ω1 6= ω2. We can set both

phases to zero without loss of generality.

Using once more the addition of sines:

u(x, t) + v(x, t) = A sin(ω1t− kx) +A sin(ω2t− kx)

= 2A sin

(
ω1 + ω2

2
t− kx

)
cos

(
ω1 − ω2

2
t

)
.
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What we have here is a conventional harmonic wave of angular frequency ω1+ω2
2 - i.e.

oscillating more rapidly than the original waves - modulated by an oscillation (not a wave

- note the absence of x) of angular frequency ω1−ω2
2 . In the case where ω1 ≈ ω2, this

modulation will be slow with respect to the oscillation of the wave itself.

The result is the so-called beat phenomenon, with an almost harmonic wave periodically

increasing and decreasing in intensity. ω1 ≈ ω2 is needed for the phenomenon to be

visible/audible.

−1

1

− π
ω1−ω2

4π
ω1+ω2

π
ω1−ω2

t

−2A

2A

− π
ω1−ω2

π
ω1−ω2

t

w

Figure 7.10: The modulated beat wave is the result of the multiplication of the dotted

wave by a temporal oscillation (dashed) and an amplitude factor, 2A. Note that both the
beat and the dotted lines represent waves, and as such also move in space. In contrast,

the dashed line represent a pure temporal oscillation that only ”modulates” (constrains

the amplitude of) the beat wave. Note also that the ”enveloppe” of the beat wave is a

periodic, non-sinusoidal oscillation with a period half of the modulating cosine.

7.6.4 Fourier Analysis

We just saw that the sum of two harmonic waves is again a periodic wave, and in some

cases is even harmonic itself. We can generalize this idea and prove that any superposition

of harmonic waves is periodic.

Conversely, an important result says that any periodic oscillation can be decomposed in

a sum of (potentially infinitely many) harmonic oscillations. Even more interestingly, it
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exists a well-defined mathematical operation, called Fourier-transform, that does exactly

that. More precisely, given a periodical signal, it allows to calculate its spectrum, i.e. the

distribution of amplitudes for each frequency of fundamental harmonic oscillation.

Fourier Analysis can be thought of as the counterpart of Taylor expansion in terms of

periodical signals instead of polynoms, and is a crucial instrument in the modern digital

world, among other uses. For example, analogic audio signals can be converted (digi-

talized) into a sequence of numbers representing a finite approximation of the signal’s

spectrum, thus allowing an efficient digital treatement and storage.
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Chapter 8

FLUID DYNAMICS

How do you sink a submarine manned

by mathematicians? Just knock,

someone will surely open the hatch.

Toilets on submarines are similarly

dangerous. Search for U-1206.
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8 Fluid Dynamics

In this chapter we discuss the behaviour of fluids macroscopically. Macroscopically

means that we do not look at the individual particles forming that fluid but the fluid as

continuous system of particles. This will then lead to important concepts such as hydro-

static pressure or buoyancy. Furthermore we will encounter very fundamental equations

such as the continuity equation or Bernoulli’s equation.

8.1 Introduction

We will first explain the basic assumptions here and then present some important results

in the next sections.

8.1.1 What is fluid dynamics about?

Fluid dynamics describes the dynamic properties of fluids. Dynamic properties (or sys-

tems) are those who can change in time, as opposed to static ones1. The other part of the

name is fluid. A fluid is generally something which can flow2 (i.e. it is a gas or a liquid).

However the distinction between a fluid and a solid is not that easy in general, as some-

thing may look solid if we only look at it for a short time but it flows on larger timescales

(e.g. a glacier or the pitch drop experiment - google it).

8.1.2 How can we model such a fluid?

The first formal concept used is that of a trajectory. Intuitively this is the path of some

small particle put into the fluid, e.g. a leaf in a stream. For each point in space we can find

exactly one trajectory passing through this point (at any given point in time). The second

- more important - concept is that of a velocity field, which is just a function giving us

the velocity of a fluid at each point in space and time (see figure 8.1). If we have such a

velocity field we can define flow lines (analogously to field lines in electrodynamics). This

lines are such that they are tangent to the vectors of the vector fields at each point. In

the cases we look at here, they are identical to the trajectories3.

1Normally static systems are seen as an (mostly) easier special case of the corresponding dynamic systems.

I.e. we will also look at static properties in this chapter.
2Technically speaking, we could say that in contrary to a solid, in a fluid two initially neighbouring particles

can move arbitrarily far away from each other.
3In general they are not, namely if the velocity field depends explicitly on time.
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Figure 8.1: A velocity field and a flowline (dashed).

8.2 Notation

Before we start a short summary of notations used throughout this chapter:

Velocity ~v: the velocity of the fluid at some point (in space and time).

Speed v = |~v|: the absolute value of the velocity.

Pressure p: force applied per unit area.

Density ρ: the density of a fluid (in mass per volume).
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8.3 Pressure

Pressure in fluid dynamics is the same concept as in thermodynamics. It is a force per

area which acts on any surface a fluid touches. The force is always perpendicular to the

surface on which it acts.

Note: In contrast to thermodynamics, the pressure here can also depend on the position

in the fluid (see below).

8.3.1 Compressible and incompressible fluids

One big difference between water and air is the compressibility. We say air is compress-

ible, that means we can change the density of it e.g. by applying pressure. We cannot

do this with water4. To be able to describe this we would need some equation relating

pressure and density. One example would be the ideal gas law (excercise: why?). But we

will not calculate compressible flows.

8.3.2 Hydrostatic pressure

Suppose we have a long vertical pipe with radius r, closed at the bottom with a lid (see

fig. 8.2). If we now fill it with water up to some height h, the total volume of water
above the lid is V = πr2h. The force of all the water pushing on the lid is thus given
by F = V ρwaterg, where g = 9.81m·s−2 is the gravitational acceleration. The pressure
on the lid is now given by the force divided by the area, which leads to p = ρgh. The
astonishing thing is that the area of the lid cancels. This means that the pressure at some

depth d (measured from the water surface) is independent of the form of the tube. It also
means that if we have connected tubes the pressure at any height h should be the same
in every tube5.

8.3.3 Buoyancy

Buoyancy is a phenomenon which is due to the depth-dependence of the hydrostatic

pressure. This also means that we need a force like gravity acting on our fluid to have

buoyancy. To find a formula for this effect, consider a small cube of side length a fully
submersed in water (fig. 8.3). Assume the top and bottom of the cube are perpendicular

to the gravitational field. Now we look at the forces due to the pressure. By symmetry,

the two forces for the sides (front,back) and (left,right) cancel. Assume the top is at a

4Of course we can, but the effects are much smaller than in air, and we neglect them here.
5Taking tubes with open tops, we can deduce that they have the same water level.
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h

r

~g

Figure 8.2: A pipe filled with water.

depth d then the force on the top is Ftop = pa2 = ρgda2. The bottom is at depth d+ a
and the force is Fbottom = ρg(d + a)a2. So the total (upward) buoyancy force on the
cube is given by Fup = Ftop−Fbottom = ρgaa2 = ρgVd. Where Vd is the Volume of the

water displaced by the cube6. If the cube is only partially submersed, we just set Ftop = 0
and arrive at the same equation. The same formula holds also for other bodies (i.e. boats),

intuitively just think of them as being built from small cubes, then also the same formula

holds7. A body can now float in water if Fup > Fg = mg. We can translate this into an
equation of of the densities, namely a homogeneous body floats if ρbody < ρwater.

6As long as the cube is fully submersed, this is the volume of the water.
7You could also do surface integrals over the whole body, which is much more tedious to do and leads

to the same results.
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Figure 8.3: A cube submersed in water.

8.4 Continuity equation

The continuity equation is a consequence from the conservation of mass. In a first step

assume we have water flowing through a tube. We take the tube to have different cross-

section areas, say A at point a and B at point b. The total mass passing point a in a
time interval ∆t is given by8 vaAρ∆t. And analogously at b. Conservation of mass
means now, that those two quantities need to be equal, i.e. vaAρ∆t = vbBρ∆t. Time
cancels on both sides and we are left with9: vaAρa = vbBρb. Now we look at a different
system. Lets say we have some sort of bottle (of constant volume) and fill it with air.

We can again look at the total mass flowing into the bottle in some∆t, which is given by
∆M = vAρincoming∆t. As the air cannot escape, the mass inside the bottle increases and
so does the density: ∆M = ∆ρV . We set this equal to the incoming mass (conservation
of mass) and get ∆ρV = vAρincoming∆t. We can simplify this by introducing the time

derivative of ρ: dρ
dt = vA

V ρincoming. We need to be a bit careful here, as the density of

8We assume v to be constant over the whole cross-section.
9ρ would also cancel here, but as we also want to look at gases, in general ρ is not the same at a and b.
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the incoming fluid ρincoming is independent of the change of density inside the bottle
dρ
dt .

Combining the two parts, i.e. looking at a tube with changing density between two points

a and b we find:

vaAρa − vbBρb = Vab
dρ

dt
, (8.1)

where Vab is the volume between the cross-sections A and B.

8.5 Bernoulli’s equation

Let us just start with the full equation and then explain what it says:

v2

2
ρ+ ρgh+ p = const. (8.2)

This equation relates the velocity, the gravitational potential and the pressure. Note how-

ever that it is only valid for incompressible fluids and that const. needs to be taken along
one flow line (but in most problems here this constant will be the same for all flow lines).

8.5.1 Derivation

Assume we have a tube with a piston at each end, filled with water (see figure 8.4). Denote

the two ends and all quantities there with a and b respectively. Suppose piston i has an
area of Ai and is at height hi above ground. Let the water have pressure pi at the piston.
If we now displace piston a by a small distance da, piston b will move db =

Aa
Ab

da = V
Ab
.

The work needed to displace piston a isWa = daAapa = V pa and for piston b: Wb =
−dbAbpb = −V pb, where the minus sign comes from the fact that the force coming

from pressure now points into the other direction (compared to piston a). So the total
work we put into the system is given byWtot = Wa +Wb = V (da − db). If we look at
the energy of the fluid, we find two effects: We displace a volume V of water from ha to
hb, this gives a change in potential energy of∆Epot = ρV g(hb−ha). The second effect

is the increase in kinetic energy ∆Ekin = ρV
2 (v2b − v2a). If we now combine everything

Wtot = ∆Epot+∆Ekin divide by V and rearrange the terms we get Bernoulli’s equation.

8.6 Surface tension, energy and capillary pressure

Surface tension comes from the fact that molecules at the surface of a liquid have no

molecules ’above’ them and are attracted by those below. So there is a force acting on

them which needs to be compensated (e.g. by pressure) to have a static surface. Assume

that we increase the surface of a liquid by a small area ∆A (e.g. by bulging it out just a
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Figure 8.4: Derivation of Bernoulli’s equation [45].

little bit). In general we need to do some work ∆E to achieve this. The surface tension

is now given by σ = ∆E
∆A . Capillary pressure is the pressure forcing water up a thin tube

with radius a. This is also a surface effect, as the water molecules need less energy when
they are at the surface to the wall compared to somewhere in the liquid (i.e. they stick to

the wall). This pressure is given by:

pc =
2γ cos(Θ)

a
(8.3)

where γ is the surface tension relative to the wall and Θ is the contact angle. To get the

height the liquid rises to, equate this pressure with the hydrostatic pressure and solve for

h.
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8.7 Friction in fluids

As for now we silently assumed that our flows do not have friction. As friction is in gen-

eral very complicated, we will only state two approximate results which hold for objects

moving through a fluid (e.g. a submarine, a ball, a car). There are two types of flows,

laminar and turbulent, which have different formulas for friction. In the laminar case we

get a force proportional to the velocity. An exact formula (only valid for a sphere with

radius R)10 is:
Fr = 6πηRv (8.4)

where v is the velocity and η is the dynamic viscosity. The turbulent friction is given by:

Fr = cWAρ
v2

2
(8.5)

Where cW is the drag coefficient (a constant depending on the material and form of the

object) and A is the area of the object perpendicular to the velocity (i.e. the area you see

if you look in the direction of flow of the fluid).

10A farmer wants to improve the milk production of his cows. He asks a biologist, an economist and a

physicist to help him. All three of them come to his farm and observe everything. After a day the economist

gives the advice to fire all cows and outsource the farm to China to improve the production by 2%. The
farmer doesn’t like this suggestion and waits for the other two. After a week the biologist presents the idea

of replacing the cows by gene manipulated algae to produce 10%more milk. The farmer decides to wait for

the physicist. After several weeks, the physicist appears with tons of paperwork and claims to have found an

idea to improve the production by over 60%. The farmer is really interested and asks the physicist to explain
his idea in more detail. The latter starts: ”Assume cows to be spherical and in a vacuum (see fig. 8.5).”

Figure 8.5: A cow in a vacuum.
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George Gobel
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9 Electro- and Magnetostatics

Electric attraction and repulsion is a fundamental property of charged particles. It is

described by the electric field. When charged particles move they generate an additional

field, the magnetic field1. The theory about electrodynamics describes these fields and

how they interact between each other or with charges and also how they evolve in time.

Since the general case of time dependent systems is pretty complicated, we will focus on

static setups. This means that the charges, wires or whatever we are looking at do not

move and have always the same position. The main sources for this chapter are [29] and

[30].

9.1 Electrostatics

This chapter examines the interaction between point charges and how this interaction can

be described. Knowing the physics of point charges one can easily derive the physics for

charge distributions.

9.1.1 Coulomb Force

The basic experimental observation of electrodynamics is that there exist ”things” that

can attract or repel each other in a way that is not due to gravity. These ”things” we

call charges and the attracting or repelling force electric force or Coulomb force. One

observes that there exist two types of charges, we call them positive and negative charge.

A charge which has a very small spreading compared to the distance to other charges we

call a point charge. An ideal point charge is just a point in space with a charge.

If we take two point charges q1 and q2 which are separated by a constant distance r we
measure a force ~F acting on q2. This force is related to the charges according to

~F12 = k
q1q2
r2

~er (9.1)

where ~er = ~r
|~r| is the vector that points from q1 to q2 and has length 1. Such a vector

with length 1 we call unit vector. k is a constant which depends how we define the basic
unit of the electrodynamic theory. There exist different systems of units and as a con-

sequence k is different in each of those unit systems. We use the SI system, where the
current and the time are defined and therefore also the charge (see 9.3.1). The unit of

charge is Coulomb C (see exact definition in section 11.1.4). One electron has a charge

1In relativity, the electric and magnetic field are not two independent fields, they have a strong relation

to each other. That is why it is often called the electromagnetic field. The relativistic treatement is out of

scope for this course.
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of 1.602 · 10−19C. We then get k = 1
4πε0

where ε0 = 8.85 · 10−12 Fm−1. The reason
why k contains a factor 4π is explained in chapter 9.1.5.

The important properties we learn from this formula are:

• The coulomb force always points in the direction of the connecting line of the two

charges. The force acting on q1 has the same amount but opposite direction to the
force acting on q2 which agrees to Newtons actio equal reactio.

• If both charges are positive or negative the two charges repel each other, if the

charges are different they attract each other.

• The force has a 1/r2 dependence as we know it from gravity (see also 9.1.5).

• Opposite the gravitation force, there is also repulsion possible. As a consequence

it is possible to shield a charge from the influence of other charges.

9.1.2 Electrostatic field

In the 18th and 19th century, when the theory about electro-magnetism was developed,

there was a big discussion how the force described by equation (9.1) can act over distances.

One point of view was that the force acts directly and that the two charges interact im-

mediately. This view contradicts with some statements from relativity which state that

information can maximal propagate with speed of light. Farady successfully described the

Coulomb force by introducing the electric field: The space has an additional property, the

electric field, which is influenced by the presence of charges and the charges interact with

the field. If we apply this field theory to the example above with the two point charges

we get that a charge, for example q1 influences the field in such a way that the interaction
between q2 and the field at the position of q2 results in the Coulomb force. The simplest
way to describe this interaction is defining the electric field ~E as quotient of Force ~F and

charge q2

~Eq1 =
~F12

q2
=

q1
4πε0r2

~er (9.2)
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To get the electric field ~E(~r) at the position ~r of a given setup, one calculates the force
~F that would act on a very small charge q0 at the position ~r and divides the force through
the charge

~E(~r) =
~F (~r)

q0

The reason why q0 has to be very small is because otherwise it might influence the other
charges and therefore the electric field. This gets important if one looks at time depen-

dent fields which we do not treat here.

Fields are often drawn by field lines, see figure 9.1. Putting a very small charge in a field

line picture the force on the small charge points always in the direction of the field line.

Therefore in a field line picture the field is always tangential to the field lines and the

strength of the field is proportional to the density of the field lines. Electric field lines

have the following qualitative properties: They start and end at the sources, in the electric

case they start at the positive charge or in infinity and end at the negative charges or at

infinity. Additionally field lines want to be as short as possible but they repel each other.

This attraction in length and repulsion of each other defines a stable state for the field

lines which they will take. Of course this is more a qualitative reason for how the field

looks like but often one gets a first intuition for a problem.

The advantage of describing the interaction of charges by a field is that it is possible to

describe the changing of the field with a finite speed. Therefore two charges interact only

with the speed of light and not immediately.

9.1.3 Superposition

The Coulomb force allows us also to examine the field of multiple charges because every

pair of charges interacts according to equation (9.1). Therefore the total force on a charge

q is the sum of all forces between q and the other charges q1...qN . The definition of the
electric field is still the same as defined in equation (9.2) and we get

~E =
~F

q
=

∑N
j=1

qjq

4πε0r2j
~erj

q
=

N∑
j=1

qj
4πε0r2j

~erj (9.3)

where ~erj is the unit vector pointing from qj to q.
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Figure 9.1: Field lines of two charges, at the left both positive, at the right one negative

and one positive. At the left picture some vectors of the electric field are drawn which

are tangent to the fieldlines. At the right picture the electric field in the oval with the

continuous line is much stronger than in the one with the dashed line because in the oval

with the continuous line the field lines are much denser to each other. [31].

9.1.4 Continuous charge distributions

When there are a lot of point charges involved (1C = 6.2 · 1018 electrons) it is useful
to use the charge density ρ = q

V instead of describing the electric field of every point

charge. The charge density contains the information how much charge q a volume V
contains. Therefore the charge in the volume is given by q = ρV if ρ is constant all over
V . It can also happen, that the density depends on the position ~y, we then write ρ(~y).
To compute the electric field at the position ~x we treat the charge that is in a very small
volume dV (~y) as point charge located at the position ~y. We then integrate the charge
over all these dV (~y) which are located inside the total volume V (so ~y is inside V ). This
leads to the formula

~E(~x) =

˚
V

ρ(~y)

4πε0|~x− ~y|2
~x− ~y

|~x− ~y|
dV (~y) (9.4)

where the ρ(~y) symbolises that one has to take the charge density at the location where
the dV (~y) is. It is not important to be able to calculate the electric field for a difficult
charge distribution. It is more important to understand the concept (see application 9.1.6).

Often the problems have some nice symmetries which makes it easier to solve.

There might also be two dimensional surface charge distributions or one dimensional

charge distributions which can be treated analogously to the three dimensional case dis-

cussed above (see 9.1.6).
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9.1.5 Gauss’ law

The 1/r2 dependence in the Coulomb law (9.1) has an important consequence. When
we look at a point chargeQ around which we place an imaginary sphere, we observe that

the number of field lines that pass through the sphere does not depend on the radius of

the sphere because field lines start and end at charges or in infinity. Let’s formulate this

more mathematically. The electric flux Ψ for a homogeneous electric field ~E is defined

asΨ = ~E · ~A where ~A is the surface vector for a plane surface. The surface vector points

perpendicular to the surface. The length of the vector is equal to the area of the surface.

If the sign ofΨ is positive, the electric field goes through the surface in the same sense as

the surface vector is pointing, if it’s negative in the opposite sense. Visually spoken the

flux indicates how many field lines pass through the surface. If we now have a curved

surface, as it is the case at a sphere, we have to split the surfaceA of the sphere into small

pieces d~S and we get a small amount of the flux by dΨ = ~E · d~S (see figure 9.2).

Figure 9.2: Curfed surface with a small surface vector d~S and the electric field ~E going

through the surface [32].

Since the surface A of the sphere is always perpendicular to the radius vector, ~E and d~S
are parallel and the flux is simply dΨ = ±EdS, where E and dS are the absolute values
of ~E and d~S (the ± indicates that one has to take into account weather the field lines go

into the sphere which is the case if Q < 0 or if the field lines go out of the sphere for
Q > 0). As we stated the whole flux through the sphere should be independent of the
radius and indeed, the calculation also states this:
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Ψ =

‹
A
dΨ

=

‹
A

~Ed~S

=

‹
A
EdS

= E

‹
A
dS =

Q

4πε0r2
4πr2 =

Q

ε0
(9.5)

The two integral symbols indicate that the integral is over a two dimensional surface and

the circle in the integral symbolizes that the area is closed (it is the surface of a volume).

The step from the second last to the last line is right since the electric field is everywhere

on the surface parallel to d~S and has the same strength E = Q
4πε0r2

(because on the

sphere the distance to the charge is everywhere the same), therefore it does not depend

on dS and we can take it out of the integral. The last integral is simply the integral of the
small surface areas dS all over A and therefore simply A = 4πr2 itself.

Following the idea of field lines it is also clear that in any volume V that has no charge in

it the number of field lines that enter the volume is the same as the number of field lines

that leave the volume. In mathematical notation this means that the total flux is zero:

Ψ =

‹
∂V

~Ed~S = 0 (9.6)

where ∂V is the surface of the volume. If we now combine it with the result from

equation (9.5) we get that independent of the volume the flux only depends on the amount

of charge that is inside the volume:

Ψ =

‹
∂V

~Ed~S =
Qin

ε0
=

1

ε0

˚
V
ρ(~y)dV (~y) (9.7)

This formula is called Gauss law and its statement is that the flux through a closed surface

only depends on the electric charge inside that volume and not on the form of the surface.

One can conclude that the field lines are produced by the charges. It is pretty useful for

example to calculate the electric field in symmetric problems (see 9.1.6) or to find out

how charge is distributed.
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9.1.6 Examples

We want now use the laws above to calculate the electric field of some configurations.

infinite plain

Let’s assume there is a thin (height = 0) plate with a surface charge density σ (charge
per area) at the x-y plane (see figure 9.3). We again use Gauss law 9.1.5 by using a small

cylinder which has above and under the x-y plane a surface parallel to the x-y plane with

area S each.

Figure 9.3: Infinite plate whtih the cylinder [34].

Since the plane is infinite and the charge density is uniform, the electric field has no

component that points parallel to the x-y plane so the field only points in z-direction.

Therefore the whole flux through the surface of the volume goes through the surface

above and under the plane and using Gauss law one gets

Qin

ε0
=

¨
2S

~Ed~S (9.8)

σA

ε0
= E · 2A (9.9)

Therefore the electric field is ~E = ± σ
2ε0

~ez . The ± depends weather one calculates the

electric field above or under the plate.
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infinite long wire

Let’s assume there is an infinite long, straight wire on the x-axis which has a constant

charge density (per length) λ. The goal is to calculate the electric field at every point.
We’ll use two different approaches:

At the first approach we use Gauss law 9.1.5 and some symmetries to calculate the elec-

tric field. To use Gauss law we need some volume and since the problem is rotations

symmetric around the z-axis we choose a cylinder with length l and radius r around the
wire (see figure 9.4). Since the wire is infinitely long there is no midpoint of the wire and

as a consequence the electric field must point radial. As a consequence the flux through

the left and right circle S (see figure 9.4) is zero. Furthermore the electric field has the

same strength everywhere on the side of the cylinder and is pointing outside, parallel to

the surface vector. Therefore the scalar product is the same as the multiplication of the

absolute values of the surface vector dS and the electric field E. Now using Gauss law
one gets

λl

ε0
=

Qin

ε0
=

‹
surface of cylinder

~Ed~S

=

¨
A
EdS

= E

¨
A
dS

= E2πrl

where A is the area of the side of the cylinder with A = 2πrl.
The electric field is therefore

~E =
λ

ε02πr
~er =

λ

ε02π(x2 + y2)

 x
y
0


The second approach uses the superposition principle for continuous distribution (see

9.1.4) and is more complicated. Since the whole problem is rotation symmetric around

the x-axis and also translation invariant along the z-axis the electric field only depends on
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Figure 9.4: Cylinder around the wire. The wire is along the z-axis.

the distance r from the wire and to simplify the calculation we look at the electric field at

the point x = z = 0 and y = r. The density in this problem is per unit length therefore

the dV is replaced by a dx in formula (9.4). So the integral looks like

~E =

ˆ
z−axis

λ

4πε0
√
x2 + y2 + z2

3

 x
y
z

 ds

=

∞̂

−∞

λ

4πε0
√
r2 + z2

3

 0
r
z

 dz

So we can look at the z and y component of the ~E field separately. For the z Component
we get 0 because z√

z2+y2
3 is an odd function (it is point symmetric to the origin) and the

integral from an odd function over a symmetric interval is always zero. Physically this can

be interpreted the following way: when we compute the contribution to the electric field

from a point on the wire at z0 we find a point−z0 which contributes the same amount to
the z-direction of the electric field but in opposite direction. So the contributions from
z0 and −z0 to the z-component cancel out. Now let’s calculate the y-component of the
electric field which we have to do by solving the integral. Since λ is constant over the
whole wire we can take it out of the integral
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Ey =
λ

4πε0

ˆ ∞

−∞

r
√
r2 + z2

3 dz

We now apply the substitution z = r sinh(u) and dz = r cosh(u)du and we get

Ey =
λ

4πε0

ˆ ∞

−∞

r2 coshu

(r2(sinh(u)2 + 1))3/2
du

=
λ

4πε0

ˆ ∞

−∞

1

r cosh(u)2
du

=
λ

4πε0

[
1

r
tanh(u)

]∞
−∞

=
λ

4πε0r
2 =

λ

2πε0r
.

This is the same result as we got at the first approach.

9.2 Potential and Voltage

An electric field produces a force on a charged particle. If one displaces the particle work

has to be done. This chapter looks at this work and the energetic properties of the electric

field.

9.2.1 Electric potential

The force ~F on a charged particle q in an electric field ~E is given by ~F = q ~E. If one wants
to move the particle from one position P1 to an other position P2 one has to overcome

the force ~F therefore one has to apply the force ~Fext = −~F = −q ~E. Moving q along a
path S one has to effort the workW

W =

P2ˆ

P1

~Fext · d~s = −
P2ˆ

P1

~F · d~s = −q

P2ˆ

P1

~E · d~s

The − sign causes the work to be positive if one drags a positive charge q > 0 against
the electric field, therefore one has to apply work (actively). If one pulls a charge q > 0
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in direction of the electric field one gets energy. Therefore if the work from P1 to P2

is positive the charge has at P2 a higher potential energy than at the position P1. If the

energy at the reference point P1 is chosen to be E0 then the energy at the point P2 the

energy is exactlyEp = W +E0. Since only the energy difference between the two points

can be used, E0 can be set to zero without changing the behaviour of the system. As a

consequence the energy at P2 is proportional to the charge and we define a new property,

the electrostatic potential ϕ(P2) (often only called electric potential) which is defined as

ϕ(P2) =
Ep

q
= −

P2ˆ

P1

~E · d~s (9.10)

This formula is only true in the electrostatic case, for the dynamic case one can also

define an electric potential but one has to pay attention to more things. The electrostatic

potential describes the influence of the electric field to the energy of a charged particle q.

9.2.2 Electric potential of a point charge

If we understand the electric potential of a point charge we can easily generalize it to

multiple point charges or even to a general charge distribution.

Let Q be a point charge at the origin of the 3-dimensional coordinate system and q an
other point charge which we move. We want to examine the potential energy of q de-
pending on its position. Lets first move q from a point P1 to a point P2 where both

points have the same distance r from the origin. As path S we chose a path where we

have always the same distance r from Q (which is at the origin). Therefore we never

move radial and therefore always perpendicular to the electric field since the electric field

points radial (this means in the same direction as the connecting line of Q and q, see
chapter 9.1.1). To calculate the potential at P2 we integrate according to equation (9.10)

and since the electric field and the path are always perpendicular to each other the scalar

product is zero and as a consequence the whole integral. Therefore the energy of q only
depends of the distance to Q, which is reasonable since the whole problem is spheric

symmetric.
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Let’s now examine the dependence of r on ϕ. The point P1 shall have the distance r1
and P2 the distance r2 from the origin. Then the potential difference is

ϕ2 − ϕ1 = −
r2ˆ

r1

~E · d~s = −
r2ˆ

r1

Q

4πε0r2
dr (9.11)

= − Q

4πε0

[
−1

r

]r2
r1

=
Q

4πε0

(
1

r2
− 1

r1

)
(9.12)

Since the reference energy can be chosen freely, it is also possible to choose the reference

point r1 freely and the simplest way is to choose r1 = ∞ and we get.

ϕ(R) = −
R̂

∞

Q

4πε0r2
dr =

Q

4πε0

(
1

R

)
(9.13)

If we want to calculate the potential difference ∆ϕ between two distances r1 and r2 we
can use equation (9.13)

∆ϕ = −
r2ˆ

r1

Q

4πε0r2
dr

= −
∞̂

r1

Q

4πε0r2
dr −

r2ˆ

∞

Q

4πε0r2
dr

= ϕ(r2)− ϕ(r1)

which makes it easy to calculate potential differences of point charges.
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9.2.3 Potential of multiple charges

We want to examine the potential energy Ep of a point charge q at position ~r in a system
of n charges q1...qn at the positions ~r1... ~rn, where infinity has potential energy zero. Since
the force at any point is the sum of the forces between q and one of the other charges
the total potential energy is also the sum of the energy between q and each other charge:

Ep(~r) = −
~rˆ

∞

n∑
j=1

qqj
4πε0|~r − ~rj |3

(~r − ~rj)d~s

=

n∑
j=1

~rˆ

∞

qqj
4πε0|~r − ~rj |3

(~r − ~rj)d~s

=
n∑

j=1

r′jˆ

∞

qqj
4πε0r2

dr =
n∑

j=1

qqj
4πε0r′j

where r′j = |~r − ~rj | is the distance between q and qj . The step from the second last to

the last line is possible because inside the sum we treat the interactions separately and we

can therefore apply equation (9.13). Therefore the potential of the n charges is given by

ϕ(~r) =

n∑
j=1

qj
4πε0r′j

We also find the potential of a continuous charge distribution ρ in a volume V by applying

the same argument as when we looked at the electric field in chapter 9.1.4 and we find

the potential at the position ~r by

ϕ(~r) =

ˆ

V

ρ(~y)

4πε0|~r − ~y|
dV (~y)

where ~y is the position of the infinite small charge dq = ρ(~y)dV (~y) inside the volume.
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9.2.4 Voltage

A potential difference is called voltage. The voltage between two points indicates how

much energy per charge a charge gains if it moves from one point to the other. The unit

of the voltage is volt V.

If one coulomb is moved between two points with one volt then this coulomb charge

gains one joule energy. Therefore one volt is defined as 1V = 1J/1C. Once the volt is
defined one can also define a new energy unit: The energy one electron gains passing one

volt is called one electronvolt eV.

The quantity volt plays an important role in electric circuits (see chapter 10).

The fact that the potential is only a function of the place allows us to make an important

statement about the electric field. If we calculate the energy W we have to apply to

move a charge q from a starting point ~r0 over a closed path γ with end point equal to
the starting point ~r0 we see that the applied energy is zero W = 0 since the potential
difference between ~r0 and ~r0 is zero. SinceW is proportional to the charge q the integral
of the electric field along the path must be zero:

˛
γ

~E · d~s = 0 (9.14)

This property makes the electric field an irrotational field (opposite to the magnetic field,

see chapter 11.1.2). The statement that the electric field is an irrotational field is only

true for the static electric field. Therefore the electrostatic field is an irrotational source

field which means that equation (9.14) holds and that the electric field begins and ends at

sources which we called charge.

9.2.5 Potential and conducting material

If a body made of conducting material is placed in an external electric field the charges

in that material will move according to the electric field. At the end there will be a stable

state with some interesting properties:

1. The total electric field (sum of external field and field of moved charges in the con-

ducting material) points perpendicular to the surface at every point on the surface.

Because if there would also be a parallel component the charge would accelerate

in this direction and it would not be a stable state.

2. Inside the body there is no electric field. Otherwise again charge would be accel-

erated what contradicts to the assumption of the stable state.
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3. Since the electric field inside the body is zero the potential all over the body is

the same. Because if we look at two points of the body and want to calculate the

potential difference we have to apply equation (9.10) and since ~E = 0 we get that
the potential difference is zero

4. Inside the body there is no net charge (this means positive and negative charge

have the same density). Otherwise it is not possible to have everywhere in and on

the body the same potential. Therefore all charge is on the surface of the body.

9.2.6 Capacity

Let’s take two bodies made of conducting material which have no net charge on each of

them. We call them electric neutral (so the negative and positive charge have the same

amount). If we take some charge from the first body and put it on the second body there

will be a potential difference ∆U between this bodies. Taking a very small charge q (so
small that it does not influence the potential or the electric field) and moving it from

the one to the other body we recognize that no mater which way we take, the absolute

value of the energy is always |∆Uq|. Therefore the charge on each body is distributed
in a very particular way such that the voltage between two points on the two bodies is

always ∆U . If we put more charge from the first to the second body the voltage will be

bigger but the energy gain displacing q from one body to the other is still independent on
the path. This means that the way the charge is distributed is the same but with a bigger

amount of charge. Therefore the direction of the electric field does not depend on how

much charge was put from the first on the second body, only the strength of the electric

field depends on this amount and the sense (if it is pointing in one or the other direction,

depends on the sign of the charge we displaced). Since the electric field is proportional

to the charge ∆Q displaced from the first body to the second, we have a proportional

dependence between the charge on the bodies and the voltage between them:

C ·∆U = ∆Q

where C is the proportional constant which is called capacity. The capacity only depends

on the geometry of the two bodies.
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9.2.7 Example

Let’s look at some examples to get used to the theory.

Plate capacitor

Putting twometallic plates with areaA each and both parallel to the y-z plane in a distance
d (d � A) we get a plate capacitor (see figure 9.5). Let us take the charge Q from the

left plate and put it on the right plate. Since d � A we model the electric field of this

setup as one of infinite spread plates. This means the electric field between the plates has

everywhere the same strength and the same direction2. Such a field is called homogeneous

field. Additionally we define the charge density σ by σ = Q
A .

Figure 9.5: Plate capacitor [35].

We know from chapter 9.1.6 the electric field is perpendicular to the plates and has ev-

erywhere the same strength. Therefore we get the voltage U between the two plates by

2This is because the plates are infinite spread out. Therefore the electric field must everywhere look the

same (translation and rotation symmetry).
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U =

right plateˆ

left plate

~Etotd~s

=

right plateˆ

left plate

~Eleft plated~s+

right plateˆ

left plate

~Eright plated~s

= Eleft plated− Eright plated

=
Q
A

2ε0
d−

−Q
A

2ε0
d =

Qd

Aε0

Therefore the capacity C is given by

C =
Q

U
=

Aε0
d

.

This problem was easy to solve because of the homogeneous electric field. Because in

case of an homogeneous electric field the voltage between two points ~r1 and ~r2 is simply
given by U = ~E · (~r2 − ~r1). If the connection line of the two points lies parallel to the
electric field this simplifies even more to U = | ~E|d where d is the distance between the
two points.

Additionally we can calculate the energy Epot stored in the capacitor. In principle the

energy is given as Epot = QU . But we have to pay attention because if we load the
capacitor, the voltage and the charge changes and we have to add the potential energy of

the different stages of the charging capacitor by taking the integral

Epot =

Q̂

0

U(q) dq

=

Q̂

0

q

C
dq =

[
q2

2C

]Q
0

=
Q2

2C

where we used the relation between the voltage and the charge given by C = Q
U . Instead

of integrating with respect to the charge we can also do it with respect to the voltage and

we get
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Epot =

Û

0

Q(u) du

=

Û

0

Cu du =
C

2
U2 =

Q2

2C
.

There is another approach to calculate the energy stored in the capacitor. Assume we

have two charged plates with charge Q on each. Assume they are separated by a small

distance δ. The force from one plate of the other is F = EQ = Q
2ε0A

Q where A is the

area of the plates. We now can compute the energy to pull one plate to the distance d to
the other plate. This energy is given as

Epot =

dˆ

δ

F ds

=

dˆ

δ

Q2

2ε0A
ds =

Q2

2ε0A
(d− δ).

If we now set δ = 0 and use C = Aε0
d we recover the stored energy from above:

Epot =
Q2

2C .

Potential of an infinitely long wire

As we have seen in chapter 9.1.6 the electric field of an infinite long wire with charge

density λ is ~E = λ
2πε0r

~er with ~er the unit vector pointing radial away from the wire. To

calculate the voltage between two distances R1 and R2 we integrate radially from R1 to

R2 (as a consequence ~E and d~r are pointing parallel).
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ϕ(r) =

R2ˆ

R1

~Ed~r

=

R2ˆ

R1

Edr

=

R2ˆ

R1

λ

2πε0r
dr

=
λ

2πε0
[ln(r)]R2

R1
=

λ

2πε0
(ln(R2)− ln(R1))

9.3 Current and magnetic field

Current is basically moving charge. A current produces an additional field, called mag-

netic field which can be measured. The existence of the magnetic field can be predicted

using relativity but the calculation is far beyond the stuff for this chapter so we make a

phenomenological approach.

9.3.1 Current and conservation of charge

If charge is moving one speaks of a current. The unit of the current I is Ampere A. The
precise definition of the current is I = dQ

dt WhereQ is the charge that passes at a certain

point.

An important concept of electrodynamics is the conservation of charge. This means that

the total charge of a closed system can not change. It is for example possible to have a

charge neutral atom and take away an electron. But then the atom is positively charged

and the total charge is still zero, i.e. the sum of both charges, the electron and atom.

Therefore the charge at a point can only change if a current flows to that point. On the

other hand a current starts and ends at points where the charge changes or the current is

a closed circuit.

224



9.3. CURRENT AND MAGNETIC FIELD

9.3.2 Magnets

Everybody has already seen a magnet, which looks like small pieces of metal. This mag-

nets are called permanent magnets since they are always magnetic. There exist also mag-

nets that work with current and which are called electro magnets (see 9.3.3). A magnet

produces a magnetic field which is somehow similar to the electric field but has some very

important differences. A magnet has always two poles, this are the parts of the magnet

where the magnetic field leaves or enters the magnet. The north pole is the part where

the magnetic field leaves the magnet and the south pole is where the magnetic field enters

the magnet (see figure 9.6). Inside the magnet the field lines go from the south to the

north pole, they build therefore closed filed lines (see chapter 11.1.4 and equation (9.15)).

The names of the poles come from the fact that the earth has also a magnetic field and

the north pole of a magnet is attracted by the geographic north pole and the south pole

of the magnet is attracted by the geographic south pole.

Figure 9.6: Magnet with the magnetic field which leaves the magnet on the right, side

where the north pole is, and enters the magnet on the left side, where the south pole is

[37].

As we know from electrostatics field lines want to be as short as possible and they repel

each other. If we now put two magnets together (see figure 9.7), we see from the total

magnetic field that the same poles repel each other and two different poles attract each

other. Because in the first case the field lines repel each other and as a consequence also

repel the twomagnets. In the second case the field lines can build nice closed loops which

want to get shorter and therefore attract the magnets.
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Figure 9.7: Two magnets with the field lines of the total magnetic field. [38].

We want to formalize the magnetic field a bit. What we called magnetic field is for-

mally the magnetic flux density ~B with unit Tesla T. The connection to other SI-units is

1T = 1kg·A−1·s−2 = 1W·s·A−1·m−2. One Tesla is a pretty strong field, for example
the magnetic field of the earth is about 5 · 10−5T and a usual magnet produces a field in

the order of 0.1T.

One important difference to the electric charge and field is that there exist no magnetic

monopoles. This means that it is not possible to separate the north from the south pole,

they build always an inseparable pair (see chapter 11.1.4). But this also means that mag-

netic field lines have no start and no end, therefore the magnetic field is a source free

rotational field. If we adapt to Gauss law in electrostatic (see chapter 9.1.5) we find the

law

‹
∂V

~Bd~S = 0 (9.15)
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9.3.3 Magnet and electric current

If one puts a permanent magnet which is freely moveable near a wire where current flows

one can observe that the permanentmagnet orient itself in a particular way which is shown

in figure 9.8.

Figure 9.8: Permanent magnets oriented along a wire where a current flows. [39].

If we now think the magnetic field being such that the magnets are tangent to the field

we get that the magnetic field looks like in figure 9.9. The rule is the following: If one

takes the right hand and places the thumb in the direction of the current then the other

four fingers show the direction of the field.

Figure 9.9: Magnetfield around a wire. [40].
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9.3.4 Lorentz force

Putting a wire in a homogeneous magnetic field and letting flow current trough the wire,

the homogeneous magnetic field and the magnetic field of the wire superpose to a total

magnetic field which is shown in figure 9.10.

Figure 9.10: The homogenous field and the field from the wire are indicated by the dashed

line. The total field is indicated by the continuous lines. The cross on the wire shows that

to current flows into the page. [41].

From the picture it is obvious that on the left side of the wire the magnetic field is pushed

more together than on the right side. Since magnetic field lines repel each other there is

a force pushing on the left side of the wire. On the other hand the field lines on the right

side are not straight lines but a bit curved. Since field lines want to be as short as possible

they attract the wire. This force on the wire in the right direction is called Lorentz force
~F . Formally it is described by the formula

~F = I~l × ~B (9.16)

where ~l is the direction of the current flowing in the wire and ~B is the magnetic field. If

we want to calculate the force on a single charge q we use the mathematically not really
precise but intuitively correct equation

I~l =
dq

dt
~l =

dq~l

dt
= q

d~l

dt
= q~v
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where ~v is the velocity of the charge. Therefore we get that the force on a moving charge
is

~F = q~v × ~B (9.17)

It is important that a charge which is not moving has no Lorentz force which is obvious

since only a moving charge has a magnetic field and a magnetic field can only interact with

an other magnetic field and not with an electric field. If one looks at electric and magnetic

fields which change in time then a changing electric field produces a magnetic field and

a changing magnetic field produces an electric field. This is described by the Maxwell

equations which are too complicated to be treated here. Therefore an electric field can

only interact with a magnetic field if the electric field changes with time since then the

electric field produces a magnetic field which can interact with an other magnetic field,

or the magnetic field changes and produces an electric field which can interact which the

electric field. Since we (nearly) always look at static systems (which do not change with

time) we will not need the Maxwell equations.
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DIRECT CURRENT CIRCUITS
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10 Direct current circuits

Besides the theoretical treatment of electric and magnetic fields there is also a very practi-

cal use. All the electronic devices base on the laws of electrodynamics. Since the calcula-

tion with the basic equations of electrodynamics is often very complicated one simplifies

the calculation of electric circuits by introducing electrical components. The laws of elec-

trodynamics then define the behaviour of the components (overview see chapter 10.4).

We will now look at electrical circuits which have a constant voltage (and most also a con-

stant current). This sort of circuits are called direct circuits. There exist also alternating

current where the voltage and the current change with time but this is not treated here.

10.1 Ohm’s law

Applying a variable voltage U to a body the current I through the body might depend
on many influences as temperature or humidity. The quotient U

I is called resistance of a

body. The simplest (not trivial) dependence is the proportional dependence: The current

is proportional to the voltage with proportionality constant R with U = RI . R is called

ohmic resistance. The linearity is just a model which is valid for many materials and

bodies. Mathematically it is not completely wrong to describe the dependence between

U and I by a linear function because any (nice) function can be approximated by a linear
function. But there exist also components which have a non linear dependence as the

light bulb or the diode. The light bulb is a typical example of the dependence of the

temperature on the resistance of a material. For metallic materials the resistance is higher

if the metal is warmer and since the wire of a light bulb gets hotter if a higher voltage is

applied one can recognise that the resistance is higher at the higher voltage.

10.2 Equivalent circuit

Sometimes it is possible and useful to describe a collection of components by a single

component. Since there are many possible combinations we want to look at the most

important.

10.2.1 Wire

A real wire usually has a little resistance. Since this resistance is spread all over the wire

it is cumbersome to describe the wire as a chain of little ohmic resistors. Instead one

adds to an ideal wire (with no resistance) a single ohmic resistor which describes the total

resistance of the wire. Since two wires also have a capacity one could additionally add
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a capacitor to a closed circuit. As one can imagine it is nearly impossible to describe all

effects and it is often not necessary to taking all into account but to consider the relevant

ones.

10.2.2 Series circuit

If two ohmic resistors are connected one behind the other one talks about a serial circuit

(see figure 10.1). Since the current I trough R1 and R2 is the same, the voltage drop

over both resistors is U = R1I +R2I = I(R1+R2). Therefore the resistance of both
resistors is R = R1 +R2.

By the same argument one can calculate the total resistance Rtot of an arbitrary number

of resistors which are all connected in series. For n resistors R1, R2, ...Rn the total

resistance is given by Rtot =
∑n

j=1Rj .

Figure 10.1: Left: serial circuit of two resistors. Right: parallel circuit of two resistors.
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10.2.3 Parallel circuit

If we put two resistors parallel to each other we get a parallel circuit (see figure 10.1). The

voltage U over both resistors is the same and the total current that flows through the two

resistors is Itot =
U
R3

+ U
R4
. Therefore the total resistance is

R =
U

Itot
=

1
1
R3

+ 1
R4

Similarly the resistance of n parallel connected resistors is given by

Rtot =

 n∑
j=1

1

Rj

−1

10.2.4 Voltage source

An ideal voltage source is a device where independent of the current the voltage is always

the same. Since already the wires leaving the ideal voltage source have a resistance one

has to add an additional resistance RS in series to the voltage source to describe a real

voltage source. RS is usually very small one can often neglect it. TakingRS into account

is only important if one wants take out a lot of energy from the voltage source or if the

rest of the electrical circuit has a very low resistance in the order of RS .

10.3 Electric power

The voltage describes how much energy one Coulomb gets if it passes the voltage. A

current describes how much charge passes per unit of time. Therefore the product of a

voltage and a current describes how much charge gets an energy by the voltage per unit

time, therefore the product tells us the power that the current performs.

P = UI

where P is the power that the current I emits over the voltage drop U .
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10.4 Electric components

Table 10.1 gives an overview over the most common symbols.

	

ideal wire (with no resistance)

switch to open and close the electric circuit

ohmic resistor

variable ohmic resistor

(ideal) voltage source

ground (reference voltage in infinity), connected to the earth

capacitor (to store charge)

inductor (inductive resistor, often a coil)

light bulb

LED (light emitting diode)

diode (lets current only flow in direction of the arrow)

horn

Table 10.1: Overview over different symbols [44]
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10.5 Kirchhoff’s circuit law

There are two very important rules which can be used to determine the current and voltage

through any circuit.

10.5.1 Current law

Because there is conservation of charge we have a restriction on the currents: At any

point where no charge is stored the sum of all currents must be zero. It is important to

chose the currents that flow to that point with one sign (so positive or negative) and the

currents that flow away with the other sign (negative or positive) (see figure 10.2).

Figure 10.2: Knot where many currents flow together. The sum I1 − I2 + I3 − I4 − I5
must be zero. The currents that flow to the knot have positive sign, the currents that flow

away negative sign.

10.5.2 Voltage law

As we have seen in chapter 9.2.4 the sum of all voltages in a closed electric circle is zero.

Therefore we define a direction of summation (in clock wise or anti clock wise) and take

the sum over all electric components of the circuit (see figure 10.3)

10.5.3 Applying Kirchhoff’s law

A knot is a point in the electrical circuit where more than two currents flow. For every

knot we apply the current law. This gives us for k knots k independent equations. For
every closed circuit one applies the voltage law which gives for every independent closed

circuit one more equation. One has to pay attention on the independence of the circuits

(see figure 10.4)
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Figure 10.3: Here the sence of summation is clock wise. For all the components (which

does not necessarily have to be ohmic resistors) we take the potential difference between

the potential at the end of the arrow minus the potential on the start of the arrow. This

gives us the voltage in direction of the summation. The sum of all these voltages must be

zero U1 + U2 + U3 + U4 + U5 = 0 [42].

If one has now n equations (from the current and voltage law) one has to express the

voltages by the currents ore vice versa. Then one should haven equations withn variables
which should be solvable.

This is a very useful method for complicated circuits. For easier circuit one can apply

other methods, for example simplify complicated systems of resistors by a single resistors

(see 10.2) and then apply the Kirchhoff’s voltage law by saying that the voltage over the

voltage source must be equal to the voltage over the single resistor.
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Figure 10.4: There are three closed circuits: circuit 1: ACDB, circuit 2: AEFB and circuit

3: CEFD. But the three circuits are not independent because circuit 3 is basically circuit

2 minus circuit 1. Therefore the voltage law must only be applied on two of the three

circuits (it does not depend on which two). To be sure not doing anything wrong: only

take the closed circuits which are the smallest possible circuits. For example circuit 3 can

be contracted to circiut 2 by making a shortcut from B to A.[43].
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10.6 Examples

10.6.1 Maximal power from a real power source

Let’s look at a real voltage source with voltage U0 and connect it to an ohmic resistor (see

figure 10.5). Since the voltage source has an ohmic resistance itself it is not possible to

get infinite power out of the source.

Figure 10.5: A real voltage source connected to an ohmic resistor. The real voltage source

is the gray box.

We want to calculate the maximal power that one can use at the resistor. The power P
on the resistor R is P = UI = I2R. The current is given byI = U0

R+RS
. Therefore the

power is U2
0

R
(R+RS)2

To get the maximal power we consider the power as function of R
and set the derivative zero:

0 =
dP

dR

= U0
(R+RS)

2 − 2(R+RS)R

(R+RS)4

= R+RS − 2R

R = RS

Therefore one can take the maximal power out of a real voltage source if the resistor is

equal to the interior resistor of the voltage source. Of course the same amount of power

as one can use at the resistor R is heating up the voltage source because of RS .
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10.6.2 Charging a capacitor

A capacitor with capacity C is connected in series with a resistor with resistance R to a

voltage source with voltage U0. At the time t = 0 the switch closes the circuit and the
capacity starts to charge (see figure 10.6).

Figure 10.6: Circuit to charge a capacity

We want to calculate the voltage over the capacity VC as a function of time. We apply

Kirchhoff’s law: U0 = UR + UC with UR = RI the voltage over the resistor and
UC = Q

C with Q the charge in the capacitor. Taking the time derivative we get

0 = R
dI

dt
+

I

C

= RC
dI

dt
+ I

− 1

RC
dt =

dI

I

− 1

RC

tˆ

0

dt′ =

I(t)ˆ

I0

dI

I

− 1

RC
t = ln(

I(t)

I0
)

I(t) = I0e
−1
RC

t

Where I0 is the current when the switch is closed and it is given by I0 = U0
R because at

the first moment no voltage drops over the capacitor (since it is empty) and therefore all

the voltage drops over the resistor. Therefore we get for the voltage over the capacitor
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UC(t) = U0 −RI(t)

= U0(1− e
−1
RC

t)

This contains some expected properties: At the beginning when there is no charge in the

capacitor there is no voltage drop over it. For t very big nearly all voltage drops over
the capacitor which is also clear since the capacitor is an interruption of the circuit for a

constant voltage.
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11 Electrodynamics

In this chapter we continue electrodynamics. First we look at magnetism from a more

formal point of view, which leads to Ampère’s Law and Biot Savart’s Law. Then we

look at time dependent fields and phenomena related to them, for example induction and

displacement current. Putting all these equations together leads to the famous Maxwell’s

equations. In a second part we will investigate the behavior of electromagnetism in the

presence of matter. At the very end, energy considerations of the electromagnetic field

are discussed.

11.1 Magnetism

In electrodynamics 1 we looked at magnetism more from a phenomenological point of

view without formal relations. We will catch up on this now. First we will have a closer

look at the magnetic field B itself and introduce the magnetic flux. Then we will inves-

tigate an important property of the magnetic field: Remember that a current (flowing

through a wire) creates a magnetic field around the wire (see 9.3.3). It is a circular field

which needs some new formalism to describe it. And finally we look at the magnetic field

of a point charge and some more examples.

11.1.1 Magnetic Field and Flux

In section 9.3.2 we gave the magnetic field ~B already a unit, namely the Tesla. To be more

precise ~B is the magnetic field density1. In a field line picture, the field density indicates

how many field lines pass through a certain area. For a given area A, we can therefore
define a quantity which corresponds to the total number of field lines through that area.

This quantity is called flux Φ and it is defined as

Φ =

¨
A

~B · d ~A

where the differential d ~A is a small area element pointing perpendicular to the surface, see
figure 9.2. The scalar product ~B · d ~A indicates the flux through dA which, summed/in-

tegrated up for all small elements, gives the total flux.

1There is also a magnetic field strength, analogous to the electric field strength ~E. This plays a less
important role in physics, see also 11.5.4
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If the area is not curved and the magnetic field is homogeneous through the whole surface

the formula simplifies to

Φ = ~B · ~A

where ~A is the surface vector pointing perpendicular to the surface and its absolute value

is equal to the area of the surface.

11.1.2 Ampere’s Law

Similar to Gauss’s law (see chapter 9.1.5) where the flux at the surface of a volume only

depends on the charge inside, we can formulate a law with currents. But there is a very im-

portant difference between the (static) electric and the (static) magnetic field: The (static)

electric field starts and ends on charges. Since there are no ”magnetic charges”, the mag-

netic field has no starting and no ending point. Therefore the magnetic field lines are

always closed and we can quantify them using this property. Instead of the flux though

a closed surface we look at the magnetic field along a closed path (enclosing a surface

S). From an intuitive point of view we have to relate the current through a wire with the

magnetic field around the wire2. If we have a wire where a current I flows through and
a surface S (that is not closed) we have that

˛
∂S

~Bd~l = µ0Iin =

¨
S
µ0
~jd~S (11.1)

where ∂S is the boundary line of the surface S and d~l is a infinitesimal short tangent
vector on that boundary line (see figure 11.1). Iin is the current that flows through the
surface S and ~j is the current density (current per area) which points in the direction of
the current flow. The direction of d~l is given by the right hand rule: if the thumb of
the right hand shows in the direction of the current then the other four fingers show the

direction of d~l and d~S shows the direction of the current (see also figure 9.9).
It is again not important being able to calculate the integrals above for arbitrary cases but

it is very useful to understand the formula.

2This in analogy to Gauss’law where we relate the charge in a volume to the flux through the surface of

the volume. Here we relate the charge flowing through a surface with the magnetic field around the surface.
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I

S

~dl

~B

Figure 11.1: The black point with the circle around it denotes the current which flows

perpendicular out of the sheet. The dashed line symbolizes the magnetic field. The shaded

area is S where the current flows through (note it does not matter where it flows through).

A small piece of the integral along the boundary of S is denoted by d~l.

The important thing about equation (11.1) is that there exists a quantity connected to

the magnetic field (namely the integral on the left hand side) which only depends on the

current. In symmetric cases this is very useful, see example 11.1.4.

11.1.3 Magnetic Field of a Moving Point Charge

An other way to calculate the magnetic field of a current is to look at the explicit depen-

dence of the magnetic field on a moving charge. Assume a point charge with charge q
at the position ~r′ is moving with velocity ~v. We want to understand the formula of the
magnetic field at a point ~r of this point charge. The formula is

~B(~r) = k
q

r2
~v × ~r − ~r′

|~r − ~r′|
(11.2)

where ~r − ~r′ is the vector pointing from the point charge to the point ~r and k is a
constant. In SI units k = µ0

4π when µ0 = 4π · 10−7V·s·A−1·m−1. This formula seems
extremely complicated at first but looking a bit more precisely and comparing it with the
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electric field of a point charge, it gets a lot simpler. The ~B field has a
q

|~r−~r′|2
dependence

as the ~E fiend in the coulomb law. This is pretty reasonable since as mentioned above

the electric field and the magnetic field have a strong connection3. This means that both

should have the same dependence on q and on the distance |~r − ~r′|. The factor4π is
part of the constant and is separated with a similar reason as in the electric case, where

4πr2 is the area of the sphere with radius |~r| around the charge. Additionally some other
laws take a nice form, see equation (11.1). The big difference between the formula of

the electric and the magnetic field is the vector product. But the vector product fulfils

exactly the properties of the magnetic field we stated in chapter 9.3.3: The vector product

ensures that the magnetic field always points tangent to a circle around the direction of

the current (which here is ~v) and since the magnetic field should be zero for ~r parallel
to ~v the angle between ~v and ~r−~r′ plays also a role and is respected in the vector product.

The formula above is not correct with respect to relativity because in the formula it is

assumed that the moving particle has an immediate influence at the position ~r which is
not possible due to relativity. But if we consider |~v| � c, when c is the speed of light,
the mistake is negligibly small.

To calculate the magnetic field of a current flowing through a wire we use equation (11.2)

and redefine some quantities. The charge dq in a short part of the wire with length dl is
dq = ρdl where ρ is the charge density per unit length. Assume that charge is moving
with a (mean) speed v. To pass the length dl the time dt is needed. We therefore have a
current I = dq

dt = ρdl
dt = ρv. Hence we have dqv = ρdlv = Idl. Since the charge dq is

assumed to be small, and located at a small spot, we can use equation (11.2) to calculate

the magnetic field d ~B caused by the current at ~r′ through the small piece of wire d~l(~r′).
We turned the path element dl into a vector in order to calculate the vector product. The
vector has to point in the direction of the current. The formula is then given as

d ~B(~r) =
µ0

4π
I
d~l(~r′)× (~r − ~r′)

|~r − ~r′|3
.

This formula is called Biot-Savart’s law. The total magnetic field at the point ~r is then the
integral of all the d ~B of all the wire, namely

3This gets obvious in relativity.
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~B =

ˆ
wire

d ~B =

ˆ
wire

µ0

4π
I
d~l(~r′)× (~r − ~r′)

|~r − ~r′|3
.

This integral does basically nothing else than sum up all the contributions of the different

parts of the wire. If the current through the wire is constant, the equation above is also

relativistically correct, because the magnetic field is constant in time.

11.1.4 Example

Magnetic Field of an Infinitely Straight Long Wire

Consider a wire along the x-axis with a current I flowing in the positive x-direction, see
also figure 11.2. Since the wire is infinitely long there is no component of the magnetic

field pointing in the x-direction. Additionally the problem is rotational symmetric around
the x-axis. Therefore the strength of the magnetic field at a point only depends on the
distance to the wire. We imagine a circle around the x-axis with radiusR. As the magnetic
field also makes circles around the wire (see figure 9.9) the line vector of the boundary

line of the circle and the ~B field point in the same direction and therefore ~Bd~s = Bds
where B and s are the absolute values of the respective fields. Therefore equation (11.1)
leads to

µ0I =

˛
∂S

~Bd~s

=

˛
∂S

Bds

= B

˛
∂S
ds

= B2πR

B =
µ0I

2πR
.

B can be taken out of the integral since B is constant at a constant distance r from the

wire.
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x
R

~B ~B

Figure 11.2: Infinitely long wire along the x axis. The magnetic field (at radius R) is
indicated by the dashed line, the path of integration is indicated by the solid line.

Force on Two Parallel Infinitely Long Wires

Let us take a wire along the x-axis and one parallel to the x-axis through the point y =
r > 0. Assume the wires only lie in the xy plane. Assume that currents I1 and I2 flow
through the first and second wire, respectively. We take them to be positive if they flow

in+x-direction. According to the example above the first wire produces a magnetic field
at the position of the second wire

~B =
µ0I1
2πr

 0
0
1

 .

Therefore the force on a length l on the second wire is due to the Lorentz force

~F = I2

 l
0
0

× ~B

=
µ0I1I2
2πr

 l
0
0

×

 0
0
1

 =
µ0I1I2l

2πr

 0
−1
0

 .

As a consequence the two wires attract each other if both currents flow in the same

direction and repel each other if the two currents flow in opposite direction.
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The formula above is also used to define the SI-unit for electromagnetism which is the

current:

”The ampere is that constant current which, if maintained in two straight parallel conductors of infinite

length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between

these conductors a force equal to 2 · 10−7 newton per metre of length.” [36]

This definition is also the reason that µ0 = 4π · 10−8V·s·A−1·m−1 is a precise constant.

Magnetic Field of a Coil

If we wind a wire to circles and place them close together we get a coil. As we have seen

above, the magnetic field of a current flowing through a straight wire has a very small

impact4. This is different in a coil, which can be viewed from different aspects: As the

windings are close to each other, the total magnetic field at a point is the superposition of

the magnetic field produced by each winding. Having many windings, the magnetic field

becomes much larger. Equivalently one could say that through a current flows each wind-

ing and therefore the total current corresponds to the current through the wire multiplied

by the number of windings. Therefore coils play an important role when considering

magnetism5.

We now look at a coil whose diameter is much smaller than its length. To calculate the

magnetic field of a coil we consider a rectangle with width l and length L which we place
as seen in figure 11.3.

Let n be the number of windings per unit length. By Amperes law (see equation (11.1))
we get

µ0Itot =

˛
∂S

~B · d~s

µ0Inl = lB

B = µnI

when Itot = nlI is the total current flowing through the rectangle and I is the current
trough the wire. The step from the first to the second line is because if we look a the

sides of the rectangle the magnetic field is almost perpendicular to the sides of the

4With 10−7N one obviously can not make an electromagnet.
5In fact one usually neglects the effect of the magnetic field of all devices except coils or coil-like devices.
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I

~B

l

L

Figure 11.3: Coil with a gray rectangle. We choose the surface vector of the rectangle

pointing into the plane because the current through the rectangle points into the pane.

In other words, integrating in the same direction of the magnetic field corresponds to a

surface vector pointing into the plane (right hand rule).

rectangle (using l � length of coil) and as a consequence ~B · d~s = 0 for the sides.
Additionally we make L very large so that at the top of the rectangle the magnetic field

is very weak and therefore the contribution can be neglected.

The magnetic field of a coil is similar to the one of a permanent magnet. Therefore one

could explain the magnetic field of a permanent magnet by assuming to have little circular

currents in the magnet. This explanation is not really true since in quantum mechanics

there exist also magnetic fields which do not origin from currents. But one can imagine

how the magnetic field looks inside a permanent magnet where the field lines go from the

south to the north pole. The field lines inside and outside the permanent magnet build

closed lines as it is stated by equation (9.15).
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11.2 Induction

Induction is an important phenomenon in electrodynamics because it gives a (first) con-

nection between the electric and magnetic field. It basically tells us that a magnetic field

that changes with time produces an electric field6. After introducing induction, we will

look at two examples, namely the generator and the transformer.

11.2.1 Approach and Definition

To approach induction we consider a metallic pipe that is falling down. In that pipe a

magnet is kept fixed (see figure 11.4). In the metal there are charges (positive nucleus

and negative electron gas). On these moving charges the Lorentz force is acting7 and

accelerates the electrons. They start circling in the pipe such that the magnetic field they

produce opposes the change of the external magnetic field8. (see also figure 11.5).

Figure 11.4: Left: frame of the magnet, the pipe is falling and the magnet is kept fixed.

The white circles with the cross or the point indicate the direction of the current due to

Lorentz force. The circle with point indicates that the current flows out of the sheet and

the circle with the cross that it flows into the sheet. Right: frame of the pipe: The pipe

stands still and the magnet is moving. The white circles again correspond to the current

in the pipe.

6Also the opposite is true, see 11.3.
7Since the nuclei are much heavier than the electrons the influence of the magnetic field is much smaller.
8External means here outside the metallic pipe, i.e. the magnetic filed of the magnet.
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In the rest frame of the pipe the pipe itself is not moving. As a consequence there is

no moving charge and therefore no Lorentz force acting. But the current needs to be

independent of the frame. The explanation of this is induction: Since the magnet is

moving (in the frame of the pipe), the magnetic field at a certain position of the pipe is

changing with time. This change causes an electric field, which causes the movement of

the charges.

Figure 11.5: Top of the pipe. The pipe is the gray ring, the current (and the electric field)

is indicated as a circle by arrows.

If we integrate the electric field along a closed path (for example the one indicated in

figure 11.5) we get a voltage uind. This voltage is connected to the magnetic field by

˛
~Ed~s = uind = −dΦ

dt
(11.3)

where Φ is the flux that flows through the closed path. The obtained equation (11.3) has

some very important properties:

• The negative sign corresponds to the fact that the current is such that it opposes a

changing of the magnetic field. It therefore represents energy conservation. Would

there be no negative sign, the current would amplify the magnetic field which then

also would lead to a bigger current. This self-amplification would lead to an infinite

current (in absence of resistance) which is of course not physical and in particular

would violate energy conservation9.

9In concrete cases one has to chose some conventions as the positive direction of current. Due to this

conventions it might happen that the induction law does not contain a negative sign (see section 12.2.3). Be

aware about this and check at the end if the result is meaningful or leads to non-physical behavior.
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• Opposite to the electrostatic case, the electric field we obtained above has no start-

ing and no ending point. The work required to afford to change the position of a

charge depends on the path, therefore one cannot find a potential which is equal

to the potential energy of a particle.

11.2.2 Self induction

Inmost of the electrical components and inmost cases there is a weak interaction between

the component and the magnetic field. Nevertheless there is one component that couples

very strong to the magnetic field. This component is the coil. Since the different windings

of a coil are close to each other and the same current flows through each winding, there

is a lot of charge moving on a small spot. This current produces a strong magnetic field

(see section 11.1.4). Since the magnetic field is proportional10 to the current I and since
the cross section of a coil does not change with time, the total flux Φ through the coil is

proportional to the current Φ = LI . The proportionality constant L is called inductance
of the coil.

If we apply an alternating current to a coil, the magnetic field through the coil (caused by

the current) is also alternating. Therefore induction happens. The induced voltage in the

coil is

uind = −dΦ
dt

= −L
di

dt
.

The coil therefore opposes a change of the current by inducing a voltage. For more

details also see the AC impedance of an inductor (see section 12.2.3). This phenomenon

is called self induction.

In order to get a feeling for the inductance, let’s compute the inductance of a very long

coil (see also 11.1.4). The magnetic field of such a coil isB = µnI where n is the number
of windings per length l and I the current through the coil. Assume that we have a coil
with cross section area A. Then the magnetic flux is Φ = BA = µnIA. Applying
an AC voltage with angular frequency ω, the amplitude of the induced voltage in each
winding is Uind = ωΦ = ωµnIA. Therefore the total voltage for all N = ln windings
is U = ωµnIAN = ωµN2A

l I = LωI , where we got the inductance

10This is not always the case, for example if the magnetic field goes through a ferromagnetic material.

There, so called saturation can occur.
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L =
µN2A

l
=

N2

Rm

whereRm is the magnetic resistance of the material around the coil11. It obviously scales

withN2. The first factorN comes from the fact that the total current density scales with

N , meaning that if we double N , the amount of moving charge is also doubled (not the
current through the wire itself, but the same current passes twice as many times). The

second factor comes from summing up the voltage at each winding. This means the ratio

between the (amplitude of the) voltage and the current scales as N2, but the magnetic

field scales as N .

11.2.3 Generator

The biggest part of electricity is produced with generators12. The principle is in most

cases the same and uses induction: Some external energy (as water or hot steam) drives

a rotation (e.g. a turbine). This rotation causes a magnet to turn and leads to a changing

magnetic field. This changing field induces an electric field in a coil or equivalently a

voltage.

To have a more formal look, assume we have a fixed coil and a magnet turning near

the coil, see also figure 11.6. For simplicity we assume that the magnet and the coil are

very close to each other such that the magnetic field is homogeneous and constant over

the area of the coil. As the magnet is rotating, the magnetic field at the coil changes

periodically. The magnetic field is

~B = B

(
sin(ωt)
cos(ωt)

)
where B is the amplitude of the field (at the coil) and ω is the angular frequency of the
rotation.

11One can think similarly to electric circuits about magnetic circuits. If the magnetic field has two possible

”paths” to ”flow”, the total resistance corresponds to a parallel circuit. Similarly if the magnetic field is forced

to take a longer path, one has to add up the resistances of the paths.
12Only photovoltaic produces it differently.
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N S

uind

ω

Figure 11.6: Magnet rotating near a coil where a voltage Uint is induced.

Therefore the flux through the coil is Φ = BxA where A is the cross-section area of the

coil and Bx is the magnetic field component pointing towards the coil (here along the

x-axis). In each winding, the voltage

uind = −dφ
dt

= −BAω cos(ωt)

is induced and as a consequence the total voltage13 is Utot = Nuind.
There is another very common setting where the magnet is fixed and the coil is rotating.

The disadvantage of this configuration is that one has to make a connection between the

rotating coil and the static consumer. This is usually done by brushes. The advantage is

that it is also possible to generate (pulsed) DC voltages.

11.2.4 Transformer

Another very important application is the transformer. This device allows to change the

voltage of an alternating current (AC) circuit. It consists of a loop of iron and two coils

wound on this loop, see also figure 11.7.

One of the coils is connected to an AC source and is called primary coil. The other is

connected to a consumer, this coil is called secondary coil. As we have seen above (see

13One could also include the factorN in another way. Namely by saying that the area where the magnetic

field goes through is N times larger than the cross-section area of the coil.
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Np

Ns

Figure 11.7: The piece of iron is gray. The two coils are placed at the top and bottom

part of the iron. Np is the number of windings of the primary coil andNs the number of

windings of the secondary coil.

example of section 11.2.2), the magnetic field scales with the number of windings. So the

magnetic field in the iron is proportional to Np, the number of windings of the primary

coil. In addition, the induced voltage in the secondary coil is proportional to Ns, its

number of windings. Therefore we have that

Us

Up
= C

Ns

Np

whereC is a proportionality constant we do not know yet from the above considerations.

And here the role of the iron comes in: If there would be no iron, the magnetic field of

the primary coil would not necessarily pass through the secondary coil. As iron extremely

amplifies the magnetic field (factor of about 5000), most of the magnetic field produced

by the primary coil ”flows” inside the iron and therefore passes through the secondary

coil. As a consequence all the magnetic properties in both coils are the same and therefore

C = 1. To derive this assume we apply an alternating voltage with angular frequency ω
and amplitudeUp at the primary coil. The voltage then is of the form up(t) = Up sin(ωt),
see also chapter 12. The magnetic field in the iron is related to the primary voltage as

up(t) = Np
dB(t)A

dt
,

B(t) =
1

NpA

ˆ
u(t) dt = − U

NpAω
Up cos(ωt)
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where A is the cross-section area of the iron. Note that in the above equation there is no

minus sign. This is discussed in more detail in section 12.2.3 and is not important in this

example as we are only interested in the amplitudes and not in the phase relation. You

might be puzzled why we use the induction law but there is no external magnetic field

inducing a voltage. The point is that the self-induced voltage of the primary coil must be

equal to the applied voltage (assuming there is no resistance). If this is not the case, there

would be a voltage difference over the primary coil causing a larger current. This current

would lead to a larger magnetic field until there is no voltage difference left.

On the other hand, the induced voltage in the secondary coil is given by (once again

neglecting the minus sign in the induction law)

us(t) = Ns
dBA

dt
=

NsA

NpA
up(t)

where we used that the magnetic field though the secondary coil is the same as through

the primary coil.

We therefore get the famous equation for the ideal transformer

Us

Up
=

Ns

Np
=

Ip
Is

where Ip and Is are the currents in the two coils. Their relation can easily be found by
power conservation: Pp = Ps. Note: This equation is only true if the magnetic field of

the two coils is strongly connected, i.e the magnetic field though both coils is the same.

For example if the consumer on the secondary side takes out a lot of current, this current

produces a magnetic field that opposes the one from the primary coil. As a consequence

the primary coil needs more current to sustain the magnetic field14. On the other hand,

the magnetic field ”looks for” an alternative way to avoid the secondary coil. Therefore

the two coils do not have anymore the same magnetic field and the above equation is

not valid. This breaking down is related to the construction of the transformer and in

particular how the coils are placed. For example if the coils are on top of each other, their

magnetic field is stronger connected than if they are aside of each other as in the picture

11.7 above.

14Remember: the magnetic field and the voltage of the primary coil are connected to each other by the

induction law. So for a give voltage, there must pass a certain magnetic field through the coil.
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11.3 Displacement current

In the previous section we discussed how a time dependent magnetic field causes an

electric field. In this section we will look at the opposite, namely a time dependent electric

field causing a magnetic field.

There is a very common way to introduce this topic. Consider a (plate) capacitor that gets

loaded with a current I (see figure 11.8). The current causes a magnetic field B around

the wire. If we only consider the current, the magnetic field between the plates would be

smaller than outside the capacitor, because the magnetic field is stronger near the wire.

As there is no wire between the plates, the contribution from the current itself is smaller.

But if we would measure the magnetic field around the plates, it would be the same as

around the wires15. The current that loads the capacitor changes the electric fieldE. This
changing electric field also causes a magnetic field. Outside of the capacitor, one cannot

tell from the magnetic field whether there is a current or a changing electric field creating

that magnetic field.

Figure 11.8: A plate capacitor (grey planes) gets charged by a current I . The current causes
a magnetic field B. Between the plates there is no current, but the changing electric field
E causes also a magnetic field.

To get a formal description consider a plate capacitor with capacity C = εAd where each
plate has cross section area A and the plates are separated by d. From the basic equation

for capacitors we can relate the current and the changing electric field by

15At least outside of the plates and only with respect to the same distance from the wire.

259



11 Electrodynamics

Q = CU,

I =
dQ

dt
= C

dU

dt

= ε
A

d
d
dE

dt

= εA
dE

dt

where we used that the electric field E and the voltage U (for a homogeneous electric

field) depend on each other as U = Ed. This ”current” I between the plates is called
displacement current and it has the same effect on the magnetic field as a usual current.

As a consequence we have to take the displacement current also in account in Ampère’s

law (see section 11.1.2). This then leads to

˛
∂S

~Bd~l = µ0Itot = µ0

(
I + εA

dE

dt

)
=

¨
S

(
µ0
~j + µ0ε

d ~E

dt

)
d~S.

The last line is the most general description where we assume an arbitrary area S with

boundary ∂S and a current density ~j. If the current density ~j is zero, the formula above
is very similar to the induction formula: The change of the electric flux through an area

S is proportional to the integral of the magnetic field around a closed circle (see also

section 12.2.3).

This displacement current might look a bit irrelevant and not very useful for applications.

But it is of great theoretical importance as it predicts/ ensures conservation of charge.
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11.4 Maxwell’s equations and their conclusions

11.4.1 Maxwell’s equations

In this section we summarize the basic equations that we found in electrodynamics.

They will form a set of integral equations16 that describe the behavior of the electric field
~E and the magnetic field ~B. This set is called Maxwell’s equations. In principle these
equations combined with the Lorentz force describe everything about electromagnetism.

Nevertheless it is far too complicated to solve these equations in many configurations,

in particular when many charges are involved like in materials. So one simplifies/adapts

these Maxwell equations for an electromagnetic field in materials which we will do in the

next section 11.5.

We use the following notation: With V we denote a volume and ∂V is the surface17 that

confines the volume V . A small element of the volume is dV . To integrate over the
surface of V we need to split ∂V into small pieces denoted by d~S where the area of the
small piece is equal to the absolute value |d~S| and the direction of d~S points perpendicular
to the surface outside the volume.

WithA we denote an area and the border of the area18 is denoted by ∂A which is a closed
line/loop. The area is again split into small pieces d ~A. We also divide the closed line into
small pieces denoted d~l. The length of these pieces is equal to the absolute value |d~l| and
it points tangent to the line. The direction of the small area pieces d ~A and the small curve

pieces d~l need to fulfill the right hand rule: If d ~A points in the direction of the thumb of

the right hand, the other fingers of that hand indicate the direction of d~l.
With this notation Maxwell’s equations are given as

‹
∂V

~E d~S =

˚
V

1

ε0
ρ dV Gauss’s law,

‹
∂V

~B d~S = 0 no magnetic monopoles exist,

˛
∂A

~E d~l = − d

dt

¨
A

~B d~S Faraday’s law (Induction),

˛
∂A

~B d~l = µ0

(¨
A

~j d ~A+ ε0
d

dt

¨
A

~E d ~A

)
Ampère’s law,

16One can also write down equivalent differential equations but they are more complicated.
17Take surface ∂V as notation for the surface and not as partial derivative or small piece of V .
18This area has not to be closed (as surface of a volume), this is why we use another variable than above.
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where ρ is the charge density and~j the current density. The circles at the integrals on the
left side denote that the surface or the path is closed (therefore the surface of a volume

or the boundary of an area). The number of integral signs denotes the dimensionality of

the integral, meaning the dimension of the space the integral has to be taken over.

Additionally to Maxwell’s equations one has to mention the Lorentz force in order to

describe the interaction between charges and fields. The Lorentz force is given as

~F = q( ~E + ~v × ~B)

where q is the charge of a particle and ~v its velocity.

With these five equations it is basically possible to describe any problem involving charges

and the electromagnetic field.

11.4.2 Electromagnetic wave

Maxwell introduced his equations in 1865. These equations predict the existence of elec-

tromagnetic waves which then were experimentally measured by Heinrich Hertz in 1886.

It is impressive how Maxwell managed to predict this waves only due to theoretical con-

siderations.

We now want to deduce the electromagnetic waves and in particular some important

properties. As the derivation is pretty tedious, you will not need to know it, but the

results are pretty important. So we state them first and give the proof(s) afterwards.

We are going to prove that a time dependent electric and magnetic field lead to a wave

satisfying the wave equations.

∂2Ey

∂x2
= ε0µ0

∂2Ey

∂t2

∂2Bz

∂x2
= ε0µ0

∂2Bz

∂t2

where we choose the coordinate system such that the electric field points in the direction

of the y axis and the magnetic field in the direction of the z axis. Do not get confused
by the ∂ sign, these are simple derivatives and the ∂ only indicates that ~E and ~B depend

on multiple variables (x, y, z, t).
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From this wave equations we can read off the speed of light c which is given by

c =
1

√
ε0µ0

.

As the spatial derivative is along the x axis, we note that the wave propagates in the x
direction meaning the ~E and ~B field are perpendicular to the direction of propagation.

Proof:

To apply Maxwell’s laws we have to use the third and fourth law, meaning we have to consider

different areas where we perform the integrations. For this we consider a small cuboid with small

side length dx, dy and dz, see also figure 11.9.

z

y

x

dx

dz

dy

Bz Bz +
∂Bz

∂x dx

∂Bz

∂x dx

Figure 11.9: Small cuboid

We start by considering a time and space dependent magnetic field ~B pointing in the y direction

of the coordinate system. Since the sides are small we can assume ~B being constant along the y
axis of the cuboid but we have to take into account the change in the x direction. We consider
the square with the four arrows as our area where we have to integrate around to get the left side

of Ampère’s law and we have to calculate the electric flux through the square for the right side.

The left side of Ampère’s law then reads
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˛
∂A

~B d~l =

(
Bz +

∂Bz

∂x
dx

)
dz −Bzdz =

∂Bz

∂x
dxdz.

To calculate the electric flux, we assume the electric field is constant across the area. Since the

area is parallel to the xz plane, only the y component of the electric field contributes to the flux
so the right side of Ampère’s law is

µ0ε0
d

dt

¨
A

~E d ~A = −µ0ε0
∂Ey

∂t
dxdz

where the minus sign enters because due to the right hand rule, the surface vector of this area

points in the −y direction. Equating these two sides yields

∂Bz

∂x
= −µ0ε0

∂Ey

∂t
(11.4)

Next we have to use the induction law which is in absence of charges or currents structurally

analogous to Ampère’s law. With the same argumentation applied to the area dxdy we get

∂Ey

∂x
= −∂Bz

∂t
.

Taking the derivative with respect to x on both sides and inserting the first equation (11.4), we
find

∂2Ey

∂x2
= − ∂

∂x

∂Bz

∂t

= − ∂

∂t

∂Bz

∂x

= ε0µ0
∂2Ey

∂t2
.

This is nothing but the wave equation we looked for. Taking the derivative with respect to t
instead of x and eliminate Ey would yield the equation for Bz .

�
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11.5 Electro-magnetic field in Materials

All materials are built of protons, neutrons and electrons.These particles are charged and

therefore interact with the electromagnetic field. As a consequence the presence of a

material influences the electromagnetic field. We will discuss this influence and its de-

scription in this section. Since the influence on the electric field is more intuitive, we will

start with the electric field and treat it more precisely and then claim a similar behavior

for the magnetic field.

11.5.1 Polarizability and dielectric constant

The case of a conductor in an electric field was already discussed in section 9.2.519. We

now want to look at insulators. In an insulator, charge cannot move freely, nevertheless

the electric field influences the charge distribution in two different ways.

Molecular polarization

Being an insulator does not mean that the electrons cannot move at all. It only means

that the binding of an electrons to its atom is strong enough that it cannot hop from one

atom to the next. But it still can move slightly such that there is more negatively charge

on one side of the atom than on the other, see also figure 11.10. As a consequence the

negative electron cloud moves on one side and builds a dipole with the positive molecule.

~E

Figure 11.10: Polarization of a molecule: The external electric field shifts the electron

(little black dot) cloud towards the positive charge (causing the external electric field).

Therefore the molecule gets a dipole moment.

19The electrons get redistributed such that there is no electric field in the conductor.
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Oriental polarization

Some molecules are already polarized. For example water molecules, where the electrons

are stronger attracted by the oxygen than the hydrogen and therefore the region around

the oxygen is negative ”charged” with respect the the region near the hydrogen atoms.

When an electric field is aligned, the molecules get rotated such that the positive part of

the molecule points in the direction of the electric field.

Independent of how the electric field influences the insulator the effect is always the same:

The polarization of the insulator leads to an electric fiels ~Ep that opposes the external field
~E0. This situation gets very obvious when we look at the situation drawn in figure 11.11.
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Figure 11.11: An electric field origins from two charged plates (left and right). This

electric field points from the left to the right and is called external field as it acts from

outside on the insulator. A polarizable insulator is placed between the two plates. The

positive part of each insulator molecule moves towards the negative charged plate and vice

versa, see left picture. Inside the insulator the positive and negative moments compensate

each other but at the edge of the insulator the positive moment is not compensated on

the left side and the negative not on the right side. This leads to an electric field in the

insulator pointing opposite the external one, see right picture.

266



11.5. ELECTRO-MAGNETIC FIELD IN MATERIALS

This means the effective electric field between the plates ~E = ~E0 + ~Ep is smaller than

the one applied to the plates. For not too large electric fields, this polarization can be

assumed to be proportional to the external field20, we call the proportionality constant

electric permittivity εr .

~E0 = εr ~E, (11.5)

~Ep = ~E − E0 = (1− εr) ~E = χ~E (11.6)

where χ is called the electric susceptibility. For vacuum (and approximately air) we get

εr = 1 and therefore χ = 0. Many materials have a permittivity between ε = 1- and
ε = 10 but there are some in the region of hounded or even thousand.
In our consideration so far we always kept the external field ~E0. If we think of the two

charged plates as a plate capacitor, this is equivalent to a constant charge on the plate

capacitor. In most cases the situation is slightly different, i.e. the voltage applied to a

capacitor is given and not the charge. As we have discussed in chapter 9.2.7, applying a

voltage U to a plate capacitor leads to an electric field E = U
d where d is the distance

between the plates. If we now insert an insulator between the plates. It opposes the

electric field. As the voltage and as a consequence also the electric field is fixed, more

charge needs to flow on the plates to create a stronger electric field. Assume the insulator

has permittivity εr and it fills the whole space between the plates (else see 11.5.3). Then
the field produced by the charge on the plates must be

E0 = εrE =
εrU

d
.

The charge (surface) density on the plates must therefore be

σ = ε0E0 =
Uεrε0
d

and the capacity is therefore given by C = Aε0εr
d where A is the area of the plates.

Obviously the capacity of a capacitor can be increased by inserting an insulator with high

permittivity.

20An attentive reader might argue that when all molecules are rotated, the polarization saturates. But this

is only the case with very strong fields, otherwise thermal fluctuations and other effects oppose this aliment.
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11.5.2 Electric displacement and Polarisation

When we introduced the electric field its properties were characterized by Gauss’ law, see

9.1.5. Taking into account the polarisation effect described in the previous chapter, we

need a new version of Gauss’ law. This gets for example obvious when we look at the

plate capacitor described above when the insulator does not fill the whole space between

the plates. Then the electric field between the plates inside and outside of the insulator is

not the same but should be according to Gauss (see also the next chapter 11.5.3). This is

because the insulator creates an electric field without being charged.

To get this problem fixed, we introduce a new field ~D called displacement field. To

understand the conceptional difference between the ~E and ~D field, let’s go one step back

and have a closer look how we introduced the ~E field. We started with the Coulomb

force and deduced that a force ~F acts on a charged particle q in an electric field due to
~F = q ~E. Hence the electric field ~E is primarily related to the force and only related to

the charge via the dielectric constant ε0. And this ε0 ”causes” trouble in case of polarized
insulators meaning we have to introduce a new constant εr renormalizing ε0. For the
new field ~D, we want to approach from the opposite side, meaning we want to relate

it primarily to the charge and then somehow to the force. As the two fields should be

connected, we expect them not to differ too much. In fact if a point like charge q is
placed in empty space the ~D field is given by

~D =
q

4πr2
~er

which only differs from the ~E field by themissing factor ε0. With the same argumentation
as for the electric field we can deduce Gauss’ law. For the ~D field it looks like

‹
∂V

~D d~S =

˚
V
ρfree dV.

In this law we find another small difference between the ~E and ~D field. In case of

the ~D field we only want to consider a free (movable) charge ρfree and not small charge
separations due to polarisation21. For this also have a look at figure 11.12.

21The origin of the problem with Gauss’ law and the ~E field lies in this polarisation: The polarisation

produces an electric field without really separating charges but only shift charges slightly.
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Figure 11.12: Gauss’ law is applied to the same situation but with two different volumes,

indicated by the dashed line. On the left side, the volume only contains the right plate. We

can apply Gauss’ law as usual. For both, the ~E and ~D field the result is correct. Looking

at the right side, the volume also contains a part of the insulator. In case of the electric

field, we know that Gauss’ law for the ~E field does not work. This is because the insulator

produces an additional field but the charge is the same. For the ~D field, we only take into

account the charge on the plate. As the insulator has no free charge, it does not at all

contribute to the ~D field, therefore Gauss’ law is valid, see also the next chapter.

In most materials the two fields are connected to each other by the permittivity

~D = ε0εr ~E.

Using this equation and the linear relation between the applied and effective field (see

equation 11.5) we can define a new quantity called polarization ~P . It is defined as

~P = ~D − ε0 ~E = χε0 ~E.
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11.5.3 Continuity equations at interfaces

We now want to have a closer look at what happens at the interface of two insulators (or

vacuum). There are two cases we have to examine: The case where the field is perpen-

dicular to the surface and where it is parallel. For all other cases we can split the field in

these two components and then use the corresponding relations.

In our example of the plate capacitor, we always had perpendicular fields so let’s first

have a look at them. Consider the situation shown in figure 11.12. We assume the usual

plate capacitor22 such that we assume the field to be perpendicular to the plates. Applying

Gauss’ law to the situation on the right side of figure 11.12, we getD ·2A = Qfree where

A is the surface area of the plate23. As a consequence, the electric displacement caused by
one plate is D = Qfree

2A . The other plate contributes the same amount such that the total

D field isD = Qfree

A . Considering the left side of figure 11.12, we also getD ·2A = Qfree

for one plate. This is because the insulator has no free charge and the considered surface

is the same. Therefore we get the same electric displacementD = Qfree

A . We see that the

electric displacement D is continuous at the surface of the insulator. This is obviously

different to the electric field in case of an insulator with εr 6= 0, because in the insulator,
the electric field is Ein =

D
ε0εr

whereas outside the insulator it is Eout =
D
ε0

6= D
ε0εr

.

To get the behaviour of the ~D and ~E field parallel to the surface we have to go back

to Maxwell’s induction law24. Assuming to have static fields, the time derivative of the

magnetic field is zero, hence also the inducted voltage. Consider the situation shown in

figure 11.13 where an interface of an insulator and air (or vacuum) is drawn. To apply

the induction law we have to consider a surface S where we would have to calculate the
magnetic flux through. As the magnetic field is constant, its time derivative is zero any-

where, so we do not need to calculate it. The other side of the equation is the integration

of the electric field along the path confining the area. As we only consider the electric

field parallel to the interface, the scalar product of horizontal boundaries of the surface S
is zero and we only have to look at the vertical ones. Assume that the area is enough small

so that the electric field is constant along the vertical sides which are ~Er in the insulator

and ~Ea in the air.

22Distance between the plates much smaller than the length and width of the plates.
23Remember the factor 2 enters because the field passes through the left and right side of the surface of

the volume.
24In fact we should first prove that Maxwell’s induction law is still valid before we can use it here. We will

have a look at it in section 11.5.5.
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We then have

uind = ~Er · ~ezl − ~Ea · ~ezl = 0

~Er = ~Ea

where ~ezl is the vector of the left boundary. For the second line we used that the elec-
tric field and the path are parallel and that the path on the right boundary points in the

opposite direction of the electric field, leading to the minus sign. We see that the parallel

electric field is continuous across the interface.

εr air

S
l

~Er
~Ea

Figure 11.13: Interface of an insulator with dielectric permittivity εr (gray) and air. To
apply the induction law we consider the area S and integrate along its boundary (rectangle
with arrows).

11.5.4 Magnetic field

Very similar considerations can be done in case of the magnetic field which we will not

repeat here. Nevertheless the most important facts and relations are summarized.

Distinction ~H and ~B field

As in the case of the electric field, we have to introduce a new field, called magnetic field
~H . But the correspondence is not as expected. The discussed ~B field corresponds to the
~D field and the new ~H field corresponds to the ~E field. To be precise, the ~B field is the

magnetic flux density25.

25As long as only the ~B field is involved, it is simply called magnetic field. In this section we will explicitly

call it flux density to distinguish it from the magnetic field ~H .
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Magnetisation ~M and its relation to ~H and ~B field

Similarly to the polarisation ~P in case of the electric field, we can introduce a magnetisa-

tion ~M , also called magnetic polarisation. This magnetisation accounts how much little

magnetic blocks in materials are aligned or anti aligned (pointing in opposite direction) to

the magnetic field. We then find the relations

~B = µ0µr
~H = µ0

~H + ~M,

~M = χm
~H

where similarly to the electric case we introduced a magnetic permeability µr and a mag-

netic susceptibility χm.

Dia,- Para- and Ferromagnetism

In case of the electric field, the charge gets always redistributed such that εr ≥ 1. This
corresponds to para- and ferromagnetism, where the small magnetic pieces in a body align

along the magnetic field such that they amplify the magnetic field outside the magnet. In

case of the Paramagnetism, this effect is small, usually 1 < µr . 1.1 and it immediately
vanishes if the external magnetic field is turned off. This is different in ferromagnetism,

where µr ≈ 100 − 10000 is possible. The values depend strongly on the tempera-
ture, the external magnetic field and other effects. This effect is so strong that after

switching of the external magnetic field, a magnetization remains. The only everyday-

ferromagnetic materials are iron, nickel and cobalt. Since magnetism is a more complex

phenomenon which involves many different aspects including quantum mechanics it is

possible to have µr < 1. This is called diamagnetism which weakens the magnetic field

outside the material. The most important diamagnetic material is water, but also some

metals are diamagnetic.

As we see, except the case of ferromagnetism, the influence of a material on the magnetic

field is very small, usually 0.99 ≤ µr ≤ 1.01 such that the effect can be neglected and
one does not need to consider the ~H field.
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Continuity equations at interfaces

Across the surface of a body, the flux density ~B perpendicular to the surface is continuous,

whereas the magnetic field ~H is continuous parallel to the surface. This corresponds to

the expected analogy with the electric field.

11.5.5 Maxwell’s equations in Materials

As motivated above, the interaction of a material and the electromagnetic field requires to

introduce the ~D and ~H fields. As a consequence we have to adapt Maxwell’s equations.

Since the whole influence of the material can be absorbed in the constants ε = ε0εr and
µ = µ0µr , we want to reformulate Maxwell’s equations such that they do not appear any

more. This leads to the equations

‹
∂V

~D d~S =

˚
V
ρfree dV,

‹
∂V

~B d~S = 0,

˛
∂A

~E d~l = − d

dt

¨
A

~B d~S,

˛
∂A

~H d~l =

(¨
A

~j d ~A+
d

dt

¨
A

~D d ~A

)

together with the connection of the fields

~D = ε0εr ~E,

~B = µ0µr
~H.
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11.5.6 Electromagnetic waves

In section 11.4.2 we have derived the existence of electromagnetic waves and some of

their properties. The derivation in the most general case also involving the fields ~D and
~H is very similar and we will not repeat it. Nevertheless in this proper derivation one

would use the ~H field instead of the ~B field. Because when also taking into account the

propagation through a surface separating twomaterials, one needs the continuity equation

for the field parallel to the surface when using the path integrals. And the ~H field is the

continuous one, as discussed in 11.5.4. In addition one has to include εr and µr . So one

gets the two wave equations

∂2Ey

∂x2
= ε0εrµ0µr

∂2Ey

∂t2
,

∂2Hz

∂x2
= ε0εrµ0µr

∂2Hz

∂t2
.

From these equations we find some interesting facts:

Speed of light

The speed of light is modified by εr and µr . Therefore it reads as

c =
1

√
ε0εrµ0µr

=
c0
n
,

n =
1

√
εrµr

where c0 is the speed of light in vacuum and we introduced the refractive index n, which
we know from optics.
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Impedance

The amplitude of the two waves is not arbitrary, they are related to each other. To see

this, consider the following form of the ~E and ~H field:

Ey = E0 sin
(
ω(t− x

c
)
)
,

Hz = H0 sin
(
ω(t− x

c
)
)
,

where we assumed an angular frequency ω and the amplitudes E0 and H0.

In the derivation of the wave equation we encountered the equations (adapted to our

situation)

∂Hz

∂x
= −ε0εr

∂Ey

∂t

which applied to our ansatz leads to

ω

c
H0 cos

(
ω(t− x

c
)
)
= ε0εrω cos

(
ω(t− x

c
)
)

H0 = cε0εrE0.

Using the relation we found for the speed of light, we find the ratio between the ~H and

the ~E field which is also called impedance Z .

Z =
E0

H0
=

| ~E|
| ~H|

=

√
µ0µr

ε0εr
.

This impedance is only valid for electromagnetic waves, in case of static charges it is

obviously wrong.
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11.6 Energy of the electromagnetic field

Now that we have introduced the ~H and ~D field, we can derive the energy density of the

electric field in its full generality. In addition we can introduce a quantity which quantifies

the energetic flux of the electromagnetic field.

11.6.1 Energy density of the electric field

As discussed in section 9.2.7, the stored energy of a capacitor is W = 1
2QU where Q

is the (free) charge and U is the applied voltage. We choose this formula because there

no capacity C appears, i.e. it is does not contain the dielectric constant26 which might be

affected by polarization. As we derived in section 11.5.3, the charge and the D field are

connected by

Q = DA

whereA is the area of the plates. In addition we can relate the electric field and the voltage
by the usual formula27

U = Ed

where d is the distance of the plates. Inserting this in the equation above, we obtain

W =
1

2
AdED.

As Ad is the volume of the capacitor, the energy density u of the electric field is

u =
1

2
~E · ~D

where we made the step to the most general formula using the scalar product of ~E and
~D. In most cases, ~E and ~D are parallel and therefore the scalar product is not necessary.

26Remember the capacity of a plate capacitor is given by C = ε0A
d
, where A is the area of a capacitor

plate and d the distance between them.
27This formula is still valid since the voltage is a measure for the energy per charge, and the energy is

something like force times displacement. Since the electric field is defined via the force, its connection to

the voltage is still valid.
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11.6.2 Energy density of the magnetic field

With similar arguments we could derive the energy density of the magnetic field. Never-

theless we will not do this, but use the strong similarity of the electric and magnetic field

formalism. Using the most general form of the electric field density, we simply claim that

the magnetic field density is

u =
1

2
~H · ~B.

11.6.3 Poynting vector

The energy density of the electric field is ue = 1
2DE = ε0εr

2 E2 and the one of the

magnetic field is um = 1
2HB = µ0µr

2 H2. Considering an electromagnetic wave, we can

use the impedanceE = ZH , where Z =
√

µ0µr

ε0εr
, to find ue = um. For the total energy

density we then find in scalar notation

u = ue + um = ε0εrE
2 = µ0µrH

2 =
EH

c
.

The energy density is related to the intensity I as

I = uc

where c is the speed of light. To derive this equation, consider an electromagnetic wave
transporting the energy density u moving with the speed of light, also see figure 11.14.
The energy E passing through a surface of area A in a time ∆t is the density times the
volume that passes the surface

E = uAc∆t.

The intensity is the energy per time and per surface, so it is simply I = uc.
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u

c∆t

A

Figure 11.14: In the time ∆t, the volume c∆A passes through the surface A

Inserting the energy density we found for the electromagnetic wave we get an intensity

of

I = EH.

We can even go one step further and give the intensity a direction, namely the direction

of propagation of the electromagnetic wave. The resulting vector is called Poynting vec-

tor ~S. As we know from the derivation of the electromagnetic wave, the direction of

propagation, the ~E and ~H field are mutually orthogonal which leads to the formula

~S = ~E × ~H.

The funny thing is that the Poynting vector is not restricted to electromagnetic waves

but can also be applied to any configuration. It basically tells you in which direction how

much electromagnetic power flows per area. Take for example a simple DC circuit with

a voltage source and a resistor. In figure 11.15, the electric and magnetic field as well as

the Poynting vector is schematically drawn. Obviously at the source, the Poynting vector

points away as the electric energy is inserted in the circuit, so given away from the source.

The opposite happens at the resistor, where electric energy flows to.
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I

+ +

- -

~E~H

~S~S

~H ~H

Figure 11.15: Usual DC circuit with a voltage source (left) and a resistor (right). The ver-

tical arrows indicate the electric field, the circles the magnetic field (caused by the current,

use right hand rule) and the horizontal arrows indicate the Poynting vector.
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Chapter 12

ALTERNATING CURRENT (AC)

Professor to student: ”Does a tram

actually run on direct or alternating

current? Student: ”With alternating

current!” Professor: ”But wouldn’t it

have to go back and forth all the

time?” Student: ” But that’s what it

does!”
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12 Alternating current (AC)

When the electric voltage periodically oscillates there are a couple of phenomena which

can be observed but do not appear when a constant voltage is applied. In the following

chapter we will describe sinusoidal voltages and the behaviour of electric devices when

they are connected to it. The main difference to constant voltages is that there exist

devices whose resistances depend on the frequency of the voltage. In particular we will

have a look at ohmic resistors, capacitors and inductors and combinations of them.

12.1 Describing alternating voltage and current

Since the voltage (and therefore also the current) oscillates with time the voltage is not

simply a number but a function of time. There are a couple of possibilities to describe

this and we will have a look at the most important ones in the next sections.

12.1.1 Fourier series

There is an important theorem in mathematics which states that any periodical function

f(t) can be decomposed in a sum fn(t) of harmonic oscillations
1. This theorem is called

Fourier’s theorem and the decomposition is called the Fourier series.

Let’s formulate this a bit moremathematically: Let f(t) be a periodic function with period
T . This means that for any t, f(T+t) = f(t). Then the theorem states that this function
f(t) can be written as

f(t) =
∞∑
n=0

An sin(ω0nt) +Bn cos(ω0nt)

where ω0 =
2π
T is the angular frequency and An and Bn are constants which depend on

the periodic function f(t). The whole theory about Fourier series is to complicated to
be treated here. The important point is that if we know the behaviour of a device for a

sinusoidal voltage we can construct its behaviour on any other periodic voltage. So from

now on we always consider the voltages to be sinusoidal unless explicitly mentioned.

1Harmonic oscillations are nothing else than sinusoidal oscillations.

282



12.1. DESCRIBING ALTERNATING VOLTAGE AND CURRENT

12.1.2 Usual real notation

A sinusoidal voltage takes the general form

u(t) = U0 cos(ωt+ ϕ)

where U0 is the amplitude of the oscillating voltage, ω = 2π
T is the angular frequency

and ϕ is the phase. Of course we could also chose the sine instead of the cosine with

a different phase but this description is more consistent with another description (see

section 12.1.4). It is convenient in AC notation to write time dependent quantities with

lower-case letters (u(t)) and time independent quantities with capital letters (U0, Ueff ).

We assume that the voltage oscillates already a long time. Therefore the whole physics

does not change if we shift time. A shift in time corresponds to an additional phase.

It is often easier for calculation to shift time such that the phase for the voltage or the

current is zero. If we take a particular choice of the phase, it is not guaranteed that other

quantities have the same phase.

12.1.3 Phasor

If the voltage oscillates harmonically, one can see the voltage u(t) at a certain time t as
cathetus of a rectangular triangle (see picture 12.1) with hypotenuse length U0. Let us

now rotate the hypotenuse of the triangle with angular frequency ω in the mathematical
positive orentation, which is anti-clockwise. Then the cathetus of the triangle behaves

exactly like the alternating voltage. This means the whole information of the alternating

voltage is encoded in the vector in picture 12.1: The amplitude, the angular frequency

and also the phase are given. Therefore we can imagine alternating current as a vector

which rotates with constant frequency, and by looking at its projection on the x-axis we
get the familiar real notation.

12.1.4 Complex notation

A phasor corresponds to a two dimensional vector which has its starting point at zero

and its endpoint is an x and y coordinate. We can now associate this two dimensional
vector to a complex number z = x + jy ∈ C where j is the imaginary unit2 and
x, y ∈ R are real. Therefore a phasor can be associated to a complex number with radius
r =

√
zz =

√
x2 + y2 with a turning phase. This can easily be written as (see section

2.4.2)

2Usually i is the imaginary unit. Since i = i(t) is already the time dependent current, j is used.
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Figure 12.1: Phasor u(t) with hypotenuse length U0. The phasor rotates around the

origin with the angular frequency ω. The projection on the real axis corresponds to the
measured quantity (for example the voltage).

z = rej(ωt+ϕ) = r cos(ωt+ ϕ) + jr sin(ωt+ ϕ).

In the case of z representing a voltage, r is the amplitude. Therefore r = U0. The voltage

is the projection of the phasor on the x-axis.
Therefore it is the real part of z:

u(t) = Re(z) = U0 cos(ωt+ ϕ).

The complex notation might be a bit strange at the beginning because we use a non-real

quantity (a complex number) to describe something real (for example a voltage). This is
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not really a problem because the complex number is just a notation. Nevertheless there

are cases where one can really think about ”turning voltages” and then the phasor and

also the complex notation as a description of the phasor get some real properties (see

12.5.1).

In this script we use the complex notation, therefore we write a voltage as u(t) =
U0e

j(ωt+ϕ) and keep in mind that the physical property is only the real part. The complex

notation allows us also to add or subtract complex numbers because the real part of the

sum of two complex numbers is equal to the sum of the real parts of the two numbers.

Thus for z1 = a1 + jb1 and z2 = a2 + jb2 where a1, a2, b1, b2 ∈ R it follows

<(z1 + z2) = <(a1 + a2 + j(b1 + b2))

= a1 + a2 = <(a1 + jb1) + <(a2 + jb2) = <(z1) + <(z2).

This property is important when we formulate Kirchhoff’s laws, see section 12.3.1. It

allows us to perform all the (linear) calculations in the complex notation as long as we do

not multiply voltage and current. This is the case when we look at the power3.

The complex notation is often used and it simplifies the equations a lot. Nevertheless it is

also possible to do the whole alternating current theory without complex numbers. One

then has always to think about the amplitude and the phase and examine the different

phenomena according to both of these quantities. With the complex notation everything

can be done with one number since the complex number contains the amplitude and the

phase.

12.2 Impedance

In this section we examine the relation between the applied alternating voltage and

current for different electrical components. The components we examine are the

resistor, the capacitor and the inductor. Most other electrical devices behave like a

combination of these three basic components, we discuss this in section 12.3.

The impedance is a generalisation of the resistance of an electrical device. The resistance

R in a direct current circuit is the ratio of the voltage and the current: R = U
I . Since

we now examine alternating currents there are more parameters of freedom than only

the ”amount” of voltage or current which corresponds to the amplitude. We additionally

have a phase shift between the applied voltage and the current. Therefore the impedance

3In this case one has to first take the real part and then multiply the two quantities.
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not only takes into account the ratio of the amplitudes of the voltage and current but also

their phase shift. Since the voltage as well as the current are represented by a complex

function, the impedance Z is usually a complex number4 . The absolute value of Z
corresponds to the ratio of the amplitude of voltage and current. The angle between the

real axis and Z corresponds to the phase shift.

Assume that we have an electrical device and we measure a voltage u(t) = U0e
jωt and a

current i(t) = I0e
j(ωt+ϕ). Then the impedance is given as

Z =
u(t)

i(t)

=
U0

I0
e−jϕ.

From this impedance we conclude that the ratio of the amplitudes is given by |Z| = U0
I0

and that the cosinus curve of the current follows the cosinus curve of the voltage (see

picture 12.2).

12.2.1 Ohmic resistor

An ohmic resistor is a device where the current is always proportional to the voltage.

Therefore there is no phase shift between the voltage and the current and the impedance

of an ohmic resistor therefore is a real number R. Of course R is exactly the ohmic

resistance known from the direct current. This means

R =
u(t)

i(t)
=

U0

I0
.

12.2.2 Capacitor

A capacitor is a device where charge can be stored (see electrodynamics 1 section 9.2.6).

The basic equation of a capacitor with capacity C is

C =
Q

U
(12.1)

4If one describes AC without complex notation one has to consider the ratio of the amplitudes and the

phase shift separately as two real numbers.
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Figure 12.2: Sinusoidal voltage and current. The amplitude of the voltage is U0 = 9
and the one of the current is I0 = 4.5. The absolute value of the impedance is therefore
|Z| = 2 and the phase shift is ϕ = 1rad. The angular frequency is ω = ϕ

10 , the period

therefore is T = 2π
ω = 20.

where Q is the stored charge and U is the applied voltage. As we have seen, the capacity

does not depend on the applied voltage. Therefore it is constant for an alternating voltage

as well. If we now multiply equation (12.1) with the voltage u(t) = U0e
j(ωt+ϕ) and take

the derivative with respect to time of the whole equation we get

u(t)C = q(t)

C
du(t)

dt
=
dq(t)

dt
= i(t)

C
dU0e

j(ωt+ϕ)

dt
= CU0jωe

j(ωt+ϕ) = jCωu(t) = i(t).

As a consequence we get the impedance ZC of a capacitor by
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ZC =
u(t)

i(t)

=
u(t)

Cjωu(t)
=

1

jCω
= − j

Cω
.

In figure 12.3 the phasor and the time evolution of the voltage and the current are shown.

The −j in the impedance means that the voltage is rotated 90◦ clockwise5. This is intu-
itively clear because the capacitor has to be charged in order to have a voltage and it is the

current that charges the capacitor. Therefore the current is first and after that, when the

capacitor is already charged a bit, one can measure a voltage. The angular frequency ω in
the denominator is intuitively also clear because if ω is big, the capacitor gets charged and
discharged fast As a consequence the current is big and therefore the impedance small.

With the capacity C in the denominator it is nearly the same, because a big capacity can

store more charge, therefore the current is big.

Figure 12.3: Phasor at time t = 0 and time diagram for a capacity. Be aware that the

voltage or current is the projection on the x-axis.

5Multiplying a complex number with j rotates that number by an angle of 90◦ in the positive orientation.
Therefore the multiplication with −j rotates it 90◦ in the negative orientation, therefore clockwise.
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12.2.3 Inductor

An inductor is an electrical device with a high inductance and an ideal inductor has no

resistance and no capacity. The inductance L = Φ
I of a device is the ratio between

the magnetic flux Φ and the current I through a device (causing the magnetic field), see
also section 11.2.2. In AC there is an additional phenomenon, called self inductance.

An alternating current causes an alternating magnetic field which induces again a voltage

in that device. The induced voltage is such that it opposes an additional growth of the

current.

From electro-magnetism we get the following equation:

u(t) = −uind(t) = L
di(t)

dt

where L is the inductance of the inductor. The switch of the sign between u(t) and
uind(t) comes from energy consideration: If we look at an ohmic resistor, the resistance

is bigger than zero. As a consequence u(t) and i(t) are in phase. If we look at a voltage
source then the voltage and the current have a phase shift of 180◦. This is basically
a convention but it ensures that Kirchhoff’s laws hold6. The induced voltage is like a

source voltage, it therefore has opposite sign to the applied voltage u(t). Assume that
the current is i(t) = I0e

j(ωt+ϕ). Then the voltage is

u(t) = L
di(t)

dt
= L

dI0e
j(ωt+ϕ)

dt
= LI0jωe

j(ωt+ϕ) = jLωi(t).

The impedance of the inductor therefore is

Z =
u(t)

i(t)
=

jLωi(t)

i(t)
= jLω.

The phasor and the time dependence are shown in figure 12.4. The j causes the voltage
to be 90◦ earlier than the current. This is clear: If one applies a voltage at an induc-
tor, the growing current causes a growing magnetic field which opposes the current to

grow. The current therefore grows slowly whereas the voltage over the inductor drops

6If there is no external alternating magnetic field through the circuit, the sum of all voltages over the

devices of a closed path is zero. If we go in the direction of the current then it is obvious that the source

and the consuming devices have different sign. See also 12.3.1.
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immediately7. The dependence on the angular frequency and the inductance is intuitively

clear because a large inductance causes a stronger magnetic field and therefore the in-

duced voltage, which opposes the current to grow, is also larger and as a consequence

the current smaller. For high frequencies, the magnetic field changes fast. Since the in-

duced voltage is proportional to the change of the magnetic field, the current is small and

therefore the impedance is high.

Figure 12.4: Phasor at time t = 0 and time diagram for an inductor. Be aware that the

voltage or current is the projection on the x-axis.

12.3 Combinations of R,C and L

In this chapter we have a look at the most important combinations of basic electrical

elements. For this the usefulness of the complex notation gets obvious. Nevertheless we

calculate one example with real impedances as well in order to show how this works.

12.3.1 Kirchhoff’s laws

We can nearly adapt Kirchhoff’s laws with some small modifications from direct current

(DC). The first modification is that we use complex currents, voltages and impedances.

Since charge cannot be created or destroyed, we get the continuity equation: For any

7This is different to the capacitor where the capacitor has to be charged in order to have a voltage drop
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point in an electrical circuit and for all time the sum of all currents ik(t) flowing to a
particular point has to be equal to the change of charge q(t) at that point:

∑
ik(t) =

dq(t)

dt
.

Assuming no charge is stored, as it is the case for (nearly) all electrical elements except

the capacitor, we get that the sum of all currents flowing to a point has to be zero,∑
ik(t) = 0. This is one of Kirchhoff’s laws.

From electrodynamics we know that for any time, the sum of all voltages uk(t) around a
closed path has to be equal to the change of the external magnetic flux Φext:

∑
uk(t) = uind = −dΦext

dt
.

Assuming there is no time dependent magnetic field, the equation simplifies to the known

Kirchhoff’s law
∑

uk(t) = 0. Be aware that the voltages are complex quantities, which
means that the vectorial sum of all the voltage phasors has to be zero.

12.3.2 Serial and parallel circuit

With the same argument as in the case of DC one gets formulas for the total impedance

of electric components connected in series or parallel.

If two or more components are connected in series, the current i(t) through the com-
ponents is the same everywhere. Multiplying each component by its impedance, one gets

that the voltage drop uk(t) = i(t)Zk over each element. The sum of all these voltage

drops must be equal to the applied voltage u(t) =
∑

uk(t)
8. The total impedance is

then given by

Z =
u(t)

i(t)
=

i(t)
∑

Zk

i(t)
=
∑

Zk

which is exactly what we expect from DC with the difference, that the impedances Zk

are complex.

8Here the voltage over the source is measured in the opposite direction, which causes a change of the

sign. It is then compatible with the notation in the Kirchhoff’s laws.
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With the analogous argumentation for components which are connected parallel to the

voltage source, one gets that the total impedance is given as

Z =

(∑ 1

Zk

)−1

which is also exactly what we expect from DC.

12.3.3 High pass filter

One important AC circuit is the high pass filter. A high pass filter has a high impedance

for low frequencies and a low impedance for high frequencies. The high pass filter is

often used as anaudio filter to keep low frequencies away from the tweeters. There are

different realisations of a high pass filter with different characteristics. One of the easiest

is the RC circuit as shown in figure 12.5.

Figure 12.5: High pass circuit. An alternating voltage uin(t) is applied to a capacitor and
a resistor and the voltage uout(t) over the resistor is measured.
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The total impedance is given as

Z = ZR + ZC = R+
−j

ωC
,

1

Z
=

1

R− j
ωC

=
ωC

RωC − j
=

ωC(RωC + j)

(RωC)2 + 1
,

|Z| =

√
R2 +

(
1

ωC

)2

whereR is the resistance of the resistor,C the capacity of the capacitor and ω the angular
frequency of the voltage applied. If a voltage u(t) = U0e

jωt is applied to the high pass

filter, the voltage drop over the resistor is given by

uR(t) = Ri(t) = R
u(t)

Z
= Ru(t)

ω2C2R+ jωC

(RωC)2 + 1
.

This leads to an amplitude UR0 and phase ϕ of

UR0 =
RU0

√
ω4C4R2 + ω2C2

(RωC)2 + 1
=

RU0ωC
√
(RωC)2 + 1)

(RωC)2 + 1
=

RU0ωC√
(RωC)2 + 1

,

tan(ϕ) =
ωC

Rω2C2
=

1

RωC
.

This means that one measures a voltage which has an amplitude UR0 with an angular

frequency ω and which leads the voltage of the AC source by the angle ϕ. The voltage
over the resistor is leading the voltage of the source: Because the voltage drop over the

resistor is proportional to the current; and at the capacitor, the current leads the voltage.

In the limitω → ∞ there is no phase shift and all the voltage drops over the resistor. This

is also clear, because at very high frequencies, the capacitor has a very low impedance and

therefore almost no influence on the circuit. In figure 12.6 the amplitude and the phase

is plotted as function of ω.

Now let us once do the calculation in real notation in order to see how elegant the complex

notation is. For the real notation there are different approaches, the easiest is to do the

calculation with phasors by geometrically add impedances. But this is basically the same

as we did above in the complex notation with vectors instead of complex numbers.
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Figure 12.6: Amplitude UR0
and phase ϕ of the high pass filter. As expected, the output

voltage is higher for high frequencies. For the plot the following values were assumed:

U0 = 1V, R = 1000Ω and C = 10−6F. Be aware that the x-axis is a frequency f = ω
2π .

For the calculation with real quantities let the current be i(t) = I0 cos(ωt)
9. This does

not mean that the voltage at the voltage source is of the form u(t) = U0 cos(ωt), because
there will be a phase shift between current and voltage. We now compute this phase shift

as well as the relation between U0 and I0.
From Ohms law we know that the voltage over a resistor is always proportional to the

current, therefore uR(t) = Ri(t) = RI0 cos(ωt). Additionally we know that the voltage
over a capacitor is always lagging 90◦ and therefore uC(t) = I0

ωC sin(ωt). The voltage
over the voltage source is equal to the voltage over the RC combination and this is the

sum of the two voltages

uin(t) = UR(t) + uC(t) = I0

(
R cos(ωt) +

1

Cω
sin(ωt)

)
= U0 cos(ωt− ϕ).

Using some trigonometric theorems to get

9We could also assume a different phase because only the phase shift between current and voltagematters.

So we choose the phase of the current to be zero because the current through both components is the same,

so this simplifies the calculation.
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U0 = I0

√
R2 +

(
1

ωC

)2

,

ϕ = arctan

(
1

ωCR

)
.

The absolute value of the total impedance therefore is U0
I0

=

√
R2 +

(
1
ωC

)2
, the same

as above in the complex notation. The phase shift is the same as well.

12.3.4 Resonant circuit

There are two different types of resonant circuits, the parallel circuit and the serial circuit.

They behave differently but the equations to solve the problem are almost the same. So

we only look at the serial circuit.

A serial resonant circuit is a circuit where a capacitor, a resistor and an inductor are con-

nected in series. If there is no resistor (or its resistance is zero) the circuit is called an

ideal serial circuit or an LC circuit. Since this is a special case we consider the general case

where R 6= 0. Figure 12.7 shows the serial resonant circuit. We connect the resonant
circuit with a voltage source with an angular frequency Ω.

Figure 12.7: Serial resonant circuit. An alternating voltage with angular frequency Ω is

applied to an inductor, a resistor and a capacitor.
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Minimal resistance

The total impedance of the circuit is given as

Z = ZR + ZC + ZL = R+ j

(
LΩ− 1

ΩC

)
.

Obviously the absolute value of the impedance is minimal if the imaginary part vanishes.

In this case the angular frequency is often called resonance frequency10 Ω = ω0. It then

holds

Lω0 =
1

ω0C
⇒ ω0 =

1√
LC

.

In fact this is only the resonance frequency for the ideal LC circuit, because in the case

of a not ideal circuit it is a bit smaller (see below). Since the impedance of the circuit is

minimal, the current from the source through the circuit will be maximal at this frequency.

Natural frequency

Since the Resonant circuit is a very beautiful example of a harmonic oscillator we shortly

repeat its properties. As it is an oscillator it can oscillate itself. Consider the following

case: We open the circuit, charge the capacitor with a charge q0 and close the circuit
again. As soon as the circuit is closed, the overall voltage must be zero, and the sum of

all voltages is given as

0 = uL(t) + uR(t) + uC(t) = L
di(t)

dt
+Ri(t) +

1

C
q(t)

= L
d2q

dt2
+R

dq

dt
+

1

C
q. (12.2)

We therefore search a function q = q(t) which solves the equation above. We try the
ansatz q(t) = q0e

λt. Inserting the ansatz in equation 12.2 we get a quadratic equation for

λ. Since we search for oscillating solutions, the discriminant is constraint byR2−4L
C < 0

and therefore the square root is complex.

10Resonance is the phenomenon where an oscillating system gets maximally excited by an external exci-

tation. Since maximal excitation is not the same as minimal resistance, the frequency we discussed is often

missleadingly called resonance frequency although the resonance frequency is something different.
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The general solution is

q(t) = e−δt

(
Ae

j
√

ω2
0−δ2t

+Be
−j

√
ω2
0−δ2t

)
,

δ =
R

2L
, ω0 =

1√
LC

.

The constants A and B depend on the conditions at t = 0. In our case we choose them
such that the capacitor is maximal charged at t = 0 which leads to

q(t) = q0e
−δt cos

(√
ω2
0 − δ2t

)
.

This means that the circuit oscillates with a frequency ω =
√
ω2
0 − δ2 < ω0 which is

called natural frequency. The oscillation is damped which is not surprising because energy

gets dissipated at the resistor (see also section 12.4.1.

Resonance (maximal current)

If we apply a harmonic oscillating voltage to the circuit we can observe resonance. As-

sume we apply the voltage u(t) = U0e
jΩt. According to Kirchhoff’s law the applied

voltage is equal to the total voltage over the consuming devices

U0e
jΩt = jLΩi(t) +Ri(t)− j

1

ΩC
i(t) =

−jLi(t)

Ω

(
ω2
0 − Ω2 + 2jδΩ

)
,

δ =
R

2L
, ω0 =

1√
LC

.

i(t) = U0
jΩ

L

1

ω2
0 − Ω2 + 2jδΩ

ejΩt,

1

Z
=

jΩ

L

1

ω2
0 − Ω2 + 2jδΩ

,

1

|Z|
=

Ω

L

1√
(ω2

0 − Ω2)2 + (2δΩ)2

If we search for the frequency with maximal current, we can take the derivative of 1
|Z|

with respect to Ω and set it equal to zero11.

11Since the first derivative vanishes at the extrema.
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0 =
d 1
|Z|

dΩ
=

1

L

D − Ω 1
2D

(
2(ω2

0 − Ω2)(−2Ω) + 4δ22Ω
)

D2
,

whereD =
√

(ω2
0 − Ω2)2 + (2δΩ)2 is the nasty square root in the denominator of 1

|Z| .

Multiplying this equation with LD3 one gets

0 = ((ω2
0 − Ω2)2 + 4δ2Ω2) + 2Ω2(ω2

0 − Ω2)− 4δ2Ω2 = ω4
0 − Ω4,

Ω = ±ω0.

This result was expected because if the impedance is minimal, the current is maximal.

Resonance (maximal voltage)

Now let us have a look at the voltage drop over the capacitor:

uC = −j
1

ΩC
i(t) = U0

1

LC

1

(ω2
0 − Ω2)− 2jδΩ

ejΩt,

UC0 =
U0

LC

1√
(ω2

0 − Ω2)2 + (2δΩ)2
,

= U0
ω2
0√

(ω2
0 − Ω2)2 + (2δΩ)2

= U0
1√

(1− Ω2

ω2
0
)2 + 4 δ2

ω2
0

Ω2

ω2
0

where UC0 is the amplitude of uC(t). Once again let us have a look at the maximal
voltage

0 =
dUC0

dt
= −U0

1

LC

2(ω2
0 − Ω2)(−2Ω) + 4δ2Ω

2D3
,

⇒ Ω2 = ω2
0 − 2δ2. (12.3)

This means that one can measure the highest voltage at the capacitor at the frequency

Ω =
√
ω2
0 − 2δ2. This frequency is usually called resonance frequency. Picture 12.8

shows the voltage over the capacitor for different frequencies depending on the dumping

δ. This frequency dependence is called resonance curve. Concerning the asymptotic
behaviour of the resonance curve we get the expected result: For very small frequencies,
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the voltage drop over the capacitor converges toward the applied voltage and is exactly the

applied voltage U0 in case the of DC. This is because when applying a constant voltage,

the capacity corresponds to an interruption in the circuit and therefore the whole voltage

drops over it. For very high frequencies, the impedance of the capacitor goes towards

zero and therefore the voltage drop also goes towards zero.

Figure 12.8: Voltage drop UC0
over the capacitor as a function of the applied frequency

for different dumpings δ. The y-axis is normed to the excitation and RLC circuit. The

x-axis and the dumping δ are normed with respect to ω0. The dotted line shows the

position of the maxima depending on the resonance frequency (for a given Ω the δ was
calculated according to equation 12.3).
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Let us make a summery of the different frequencies:

Name Formula Property

natural frequency
√

ω2
0 − δ2 Frequency at which the circuit oscillates without exter-

nal excitation.

minimal impedance

or maximal current

ω0 The two cases are the same since for minimal

impedance the current gets maximal at a given voltage

resonance fre-

quency

√
ω2
0 − 2δ2 Maximal voltage drop over the capacitor

Table 12.1: Overview of different frequencies where ω0 = 1√
LC

and δ = R
2L .

12.4 Power consideration and effective values

Until now we always considered equations which were linear in the voltage or in the

current. Therefore there was no problem when adding complex voltages or currents and

then taking the real part to get the property one measures at the circuit. Now we look at

the power and therefore multiply current and voltage. So we have to take the real value

first and then multiply the two quantities.

12.4.1 Power

The power consumption at time t of an electrical device is p(t) = u(t)i(t) which is
time dependent. In many cases the instantaneous power is not so important and one is

more interested in the mean power consumption12. Since we look at periodic oscillations

one only has to consider one period T to calculate the mean value. Let’s apply a voltage

u(t) = U0 cos(ωt) at a device which causes a current i(t) = I0 cos(ωt+ ϕ) with phase
shift ϕ flowing through that device. The mean power then is

12For example consider a resistor: There the mean heat dispersion is more relevant than its instantaneous

power consumption because the resistor also has some heat capacity
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P =
1

T

T̂

0

u(t)i(t)dt (12.4)

=
U0I0
T

T̂

0

cos(ωt) cos(ωt+ ϕ)dt

=
U0I0
T

 T̂

0

cos2(ωt) cos(ϕ)dt−
T̂

0

cos(ωt) sin(ωt) sin(ϕ)dt


=

U0I0
2

cos(ϕ) (12.5)

where we use cos(ωt + ϕ) = cos(ωt) cos(ϕ) − sin(ωt) sin(ϕ) and sin(ωt) cos(ωt) =
1
2 sin(2ωt). The first integral

13 gives T
2 and the second one gives zero. This means that

for constant current I0 and voltage amplitudeU0 the mean power depends on their phase

shift. To be more precise, the power we calculated is the one that flows into that device

and gets converted into an other energy, for example heat at the resistor or rotation in

case of an electric motor. The power is maximal for ϕ = 0, so for example for a resistor.
On the other hand the power is minimal for ϕ ± 90◦ which corresponds to a capacitor
or an inductor. In case of the capacitor, the phase shift is ϕ = 90◦ (see figure 12.3).
After the capacitor is completely charged (which is the case for voltage at the capacitor

being maximal, i.e. u(t) = U0) the capacitor gets discharged. This means energy flows

back from the capacitor to the source until there is no charge left in the capacitor. This is

the case when the voltage is zero, and then it gets charged again. While charging, energy

flows from the source to the capacitor. In the time diagram, the discharging periods

are those where the voltage and the current have opposite sign and as a consequence

the instantaneous power is negative. Obviously the charging and discharging energy is

the same which means that the capacitor has no mean power consumption. A similar

argument can be made with a coil where the energy is stored in the magnetic field.

13One can calculate this using partial integration or using that the cosine and the sine are the same function

up to a phase shift and therefore
´ T

0
cos2(ωt)dt =

´ T

0
sin2(ωt)dt = A for a certain number A. Then

A =
´ T

0
cos2(ωt)dt =

´ T
0

1− sin2(ωt)dt =
´ T

0
1dt−A = T −A which leads to A = T

2
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12.4.2 Effective values

In direct current, the power is simply P = UI whereas in AC there are the factors14 2
and cos(ϕ). One defines

Ueff =
1√
2
U0,

Ieff =
1√
2
I0,

as the effective voltage and effective current. Sometimes these quantities are called RMS

(root mean square) of the voltage or current. UsingUeff and Ieff one gets the mean power
of a device as

P = UeffIeff cos(ϕ).

In everyday life most of the voltages and currents are indicated with their effective value

instead of the amplitude. This has the advantage that one can simply multiply the voltage

and the current in order to get the power consumption15. As an example the voltage at

the power sockets has Ueff = 230V which means that the amplitude of the voltage is
U0 =

√
2 · 230V ≈ 325V.

12.4.3 Active, reactive and apparent power

A closer look to the mean power in equation (12.5) allows an interesting view on the

phase shift. If we apply a voltage u = U0 cos(ωt) to a device, we can rewrite the current
as i(t) = I0 cos(ωt + ϕ) = I0(cos(ωt) cos(ϕ) − sin(ωt) sin(ϕ)) which is basically a
superposition of a sine and a cosine oscillation with amplitude−I0 sin(ϕ) and I0 cos(ϕ)
respectively. The cosine oscillation is in phase with the voltage and therefore it corre-

sponds to the part of the current which dissipates energy at the device. One calls this the

active current, which means that is the part of the current that does (useful) work. The

sine oscillation does not perform any work, it only causes energy to be transferred from

the source to the device and back. This current is called reactive current.

Analogously one can define active, reactive and apparent power. What we have defined

as mean power is also called active power P = UeffIeff cos(ϕ) since this is the electric

14The factor 2 is only valid for sinusoidal signals, for other signal forms one has to calculate it from
equation (12.4).

15Assuming to have no phase shift ϕ = 0. This is the case in most of the everyday life devices. Never-
theless at big electric motors cos(ϕ) is indicated.
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power that is used by the electric device. The apparent power S = UeffIeff is the total
power that is transferred between the source and the device. One part of this total power

is the past used as active power and the other part is transferred back to the source. The

second part is the energy oscillation between the source and the device. It is called reactive

power and defined as Q = UeffIeff sin(ϕ). Using sin
2(ϕ) + cos2(ϕ) = 1 one gets the

following relation between the three different powers:

S2 = P 2 +Q2.

Generally one wants to have small reactive currents because a reactive current does not

transfer energy to the device but it causes a larger current than necessary which leads to

more losses in the cables. There are different possibilities to avoid reactive current. The

simplest is to connect a capacitor or an inductor parallel to the device such that the total

impedance suffices ϕ = 0. Then the reactive current only oscillates between the device
and the capacitor or inductor and not through the cables from the power station to the

device.

12.5 Three-phase electric power

The word wide power net, which also provides electricity at home16, is a bit more sophis-

ticated version of AC than we have discussed until now. This version is called three-phase

electric power and it has some nice applications we will look at.

12.5.1 Definition and production

Usually, a three-phase power supply consists of three wires and to each wire an AC voltage

is applied. Additionally there is one wire which is called neutral wire, which we consider

later. The three wires with the voltage are called phases. The amplitude of the voltage

in all of the three phases is the same but shifted by 120◦ = 2π
3 which is shown in figure

12.9.

There are different ways to create three-phase power, the easiest is the three-phase gener-

ator. It works as an usual generator but the three coils placed around the rotating magnet

16The power is brought to you home with a three-phase system and then the three phases are split up.

Therefore at an usual power socket there is only one phase together with the ground wire and the neutral

wire. Only very few power sockets are three-phase sockets. They are usually only needed for machines that

consume a lot of energy. These sockets (usually) have five poles.
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12 Alternating current (AC)

Figure 12.9: The three voltages of a three-phase system. The wires are labelled by L1, L2

and L3.

are displaced by 120◦ each, see figure 12.10. The magnet in the center rotates and there-
fore the magnetic field at the coils is changing. This induces a voltage in the coils. Since

the coils are displaced by 120◦, the induced voltage is also shifted by 120◦. Be aware that
the induced voltage at a coil reaches its maximum when the magnet changes its polarity

because the induced voltage is proportional the variation of the magnetic field in time.

This variation is maximal when the magnet changes its polarity.

The setup described above allows a visualisation of the phaser: Treat the phasor as a

vector perpendicular to the North-South direction of the magnet such that the maximal

voltage is induced in a coil when the phasor is pointing to that coil. Then the induced

voltage in each coil is the projection of the phaser on the axis of the coil.

12.5.2 Star and Delta circuit

A big advantage of the three-phase power circuit is that there are two possibilities of

connecting a device. A three-phase device is (usually) connected to all three phases and

it (usually) consists of three independent loads which are drawn as resistors in figure

12.11. However, there are two possibilities how this can be done, see figure 12.11. Let

U0 be the amplitude of all the three phases, the first phase therefore has the voltage

u1 = U0 cos(ωt), the second phase hasu2 = U0 cos(ωt + 120◦) and the third one has
u3 = U0 cos(ωt+ 240◦).
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12.5. THREE-PHASE ELECTRIC POWER

Figure 12.10: A three-phase generator. The tree coils are rotated by 120◦. The magnet
in the center is rotating with angular frequency ω and induces an AC voltage in the coil.
One pole of each coil is connected to the neutral wire N , the other poles are the phases
L1, L2 and L3.

Star circuit

The intuitive easier one is the star circuit where each load is connected the same way

as the coils in the three-phase generator. At the first load (connected to phase L1) the

voltage u1 drops, as expected. Analogously the other loads. If all loads have the same
impedance then there is no current flowing from the three loads to the generator through

the neutral wire. This is because the sum of all three currents is zero17. Therefore it is not

necessary to connect the common point of the three loads with the neutral wire, the loads

need only to be connected at one point with each other. It is often useful to connect the

common point with the neutral wire to stabilize the circuit, see also chapter 12.5.3.

17This can easily be seen if one adds the currents as phasors. Since we assume that all the three impedances

are the same, the three currents are also the same. The three phasors form an equilateral triangle, therefore

the starting point is equal to the ending point and as a consequence the sum of the three currents is zero.
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12 Alternating current (AC)

Figure 12.11: Left side: The star circuit where each load is connected to a phase and the

neutral wire. Right side: Each load is connected to two phases, the neutral wire is not

used at all.

Delta circuit

The other possibility is the Delta circuit where each load is connected to two phases. The

advantage of this circuit is that the voltage drop over each load is higher. To understand

this let’s have a look at the voltage u(t) over one load, for example connected to L1 and

L2:

u(t) = u1 − u2 = U0(cos(ωt)− cos(ωt+ 120◦))

= U0(cos((ωt+ 60◦)− 60◦)− cos((ωt+ 60◦) + 60◦)

= U0(cos(ωt+ 60◦) cos(60◦) + sin(ωt+ 60◦) sin(60◦)

− cos(ωt+ 60◦) cos(60◦) + sin(ωt+ 60◦) sin(60◦))

=
√
3U0 sin(ωt+ 60◦)).

This means that the voltage drop over each load has an amplitude of
√
3U0.

To start a big electric motor one can use both, the properties of the star and Delta circuit.

When starting the motor it needs a lot of current. If one applies a smaller voltage, the

current is also smaller18. So one starts the motor in the star circuit and as soon as it

rotates with constant speed, one connects it as Delta circuit and the motor has more

18This might sound trivial but it is important for the fuse because it should not melt.
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power because the load is connected to a higher voltage. In the past this was often used

to start large motors and there were special switches which allowed to change easily from

the star to the Delta circuit. Of course it is a bad idea to connect a motor which is not

build for a Delta circuit to a Delta circuit as it might get damaged.

12.5.3 Advantage of a three-phase system

There are different reasons why our power supply at home is a three-phase system. We

now investigate some of them.

Role of neutral wire

As we have seen in the section about the star circuit (see section 12.5.2), there is no

current flowing through the neutral wire as long as the impedances at the three phases

are the same. But if the impedances of the three consumers are not the same, a current

flows through the neutral wire. If the common point in the star circuit is not connected

to the neutral wire, this common point has a non-zero voltage with respect to the neutral

wire. This is because at the common point the total current has to be zero19. This is only

possible if the three currents are the same20. Since not all impedances are the same, the

voltage drop over the loads will not be the same and as a consequence the sum of the

voltage will not be zero. This sum of the voltage drops is the same as the voltage between

the common point and the neutral wire. To guarantee that the voltage drop over all the

consumers is the same, one connects the common point with the neutral wire and then

the neutral wire is like a fixing point where current can flow away if there are different

impedances.

This is exactly the situation at home: The houses are connected to the three-phase net.

In the house the different sockets are connected to different phases and to the neutral

wire. If all the phases are loaded the same (connected with the same impedance), then

there is no current flowing out of the house through the neutral wire. But if for example

only one power socket is used then the current flows through the neutral wire out of the

house.

Energy transfer

Concerning the energy transfer the three-phase system offers a very efficient way to trans-

port electrical energy over a (long) distance. If the impedance at the three phases is the

19There is no capacitor and Kirchhoff’s law holds.
20To distinguish: The three currents are the same if the common point is not connected to the neutral

wire. They are not the same if the common point is connected to the neutral wire.
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same then (nearly) no current flows through the neutral wire. Therefore we only need

the three phases to transport the electrical energy whereas in a simple AC circuit we need

two wires for a closed circuit which corresponds to one single phase. This means in the

three-phase system the three wires transport as many energy as three simple AC circuit

consisting of six wires.

This gets very important if one wants to transport a lot of energy over a long distance

because a lot of energy means thick cables and long distances mean long cables. Hence, a

lot of wire. The power net consists of three thick cables where the phases are connected

and one thin cable with the neutral wire (to stabilize the net). The different phases are

connected then cleverly to the different houses (or even different villages) such that the

impedance on all three phases is approximately the same. In terms of whole villages

it is not relevant if someone at home uses a lot of power from one single phase21. In

conclusion the impedances applied to the three phases can be considered the same.

Three-phase motor

The three-phase motor is in principle the same as a generator (see figure 12.10) but instead

of turning the magnet and inducing a voltage in the coils, a voltage is applied to the

coils which create a magnetic field which causes the magnet to turn around. Since the

magnetic field of a coil is proportional to the current flowing through it and the current is

proportional to the applied voltage22 and the voltage correspond to a rotating phasor, the

magnetic field also rotates. But the direction of the rotation (whether it rotates clockwise

or anti-clockwise) depends on how the three coils are connected to the three phases.

Actually, it only depends on how the three phases are connected to the coils: in clockwise

or anti-clockwise direction. This means if the three coils coil 1, coil 2 and coil 3 are

connected to L1, L2 and L3 respectively or L1, L3 and L2. By swapping the phases of

two coils the motor changes its direction of rotation.

This property seems pretty unspectacular but it allows to run a motor in a certain direction

which is not that simple to achieve in a simple AC circuit: In a simple AC circuit there is

no rotating magnetic field (because there is only one phase). There is only a magnetic field

that always points in the same direction and changes its strength. As a consequence the

motor does not know in which direction it should turn so it starts turning in an arbitrary

direction. Of course there are some tricks how one can force the motor of a simple AC

circuit to turn in a specific direction but it is more complicated than in case of a three-

phase system.

21Additionally each phase at home is connected to a fuse, the power consumption is therefore limited. In

terms of the whole village the consumption of one single house is small/negligible
22Maybe with phase shift but this phase shift is the same for the three coils in a three-phase motor.
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Chapter 13

SPECIAL RELATIVITY

Everything is relative.

Certainly not Albert Einsteina

aAs explained in this chapter, not every-

thing is relative.
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13 Special Relativity

Roughly 100 years ago there were some phenomena in different fields of physics that

could not be explained by the theories of that time. Einstein recognised that (at least

some of) these phenomena can be described using a modification of classical mechanics

and taking into account how one observes an other reference frame. The complete theory

of relativity is very complex and needs a lot of maths. Nevertheless there is a small part of

it which gives already a lot of interesting insights and which gets along with high school

maths. This easier part is called special relativity and the more general theory is called

general relativity. As long as nothing else is mentioned in this chapter, we will always do

special relativit and sometimes simply call it relativity. The main source of this chapter

are [63] and [64].

In this chapter we will first have a look at classical mechanics. After we understand the

most important properties of classical mechanics we will look first at the assumptions of

special relativity and then at its conclusions and interpretations. In the end we will resolve

some of the most common paradoxes. Before we start doing physics lets have a look at

some historical milestones that lead to relativity.

13.1 Historical Milestones

Before Einstein developed relativity there were different experiments and parts of the

theory which were incompatible. In electrodynamics this inconsistency was especially

big. Let’s have a look at the big questions physicists had roughly 150 years ago.

13.1.1 Aether and electromagnetic waves

In 1864, Maxwell elaborated the famous Maxwell’s equations which describe (nearly) ev-

erything in classical electrodynamics. These equations also predict electromagnetic waves

which were then experimentally proven by Heinrich Hertz in 1887. If one thinks about

waves in every day life one always imagines a medium where this waves propagate. For

example sound waves consist of air (or an other medium) which gets compressed and

stretched. But the important thing is that there is a medium in which the wave propagates,

eg. if there is no medium, nothing can get compressed and stretched so no sound can

propagate. Only in the reference frame where the medium is resting, the wave equations

take the simple form, for all other reference systems one has to add additional terms1.

Until the beginning of the 20th century physicists thought that light would also propagate
in a medium called aether. But Michelson andMorley showed in their famous experiment

that this can not be true. For this they measured the speed of light in the direction of the

rotation of the earth and perpendicular to it. They thought that the aether should rotate a

1To show this mathematically one needs a bit more math, therefore we skip this here
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bit slower than the earth because it must somehow glue to the rest of the universe which

is not rotating. Therefore the speed parallel and perpendicular to the direction of rotation

should differ, which was not the case. Since light propagates as a wave it fulfils the wave

equations. In the frame of the medium they take the simple form given in equation 7.1. If

one calculates the transition from one to another (moving) reference frame using classical

mechanics, the simple wave equation change. Since light does not travel in a medium, the

simple wave equations must hold in all reference frames, which contradicts the calculation

of classical mechanics. This was a clear hint that something was wrong. At the beginning

of the 20th century, famous physicists as Lorentz and Poincaré figured out how one has to
calculate the transition from one to the other reference frame. This lead to the Lorentz

transformation, which is nowadays the basis of relativity. So the found the equations

some years before Einstein and Einstein surely knew the equations already. But the big

success of Einstein was to give the equations a physical meaning. Because Lorentz and

Poincaré (and many others) didn’t realise that these equations contain a deep property of

nature, they simply used these equations to resolve the contradiction in the theory.

13.1.2 Flying electron

We now want to look at an example where classical mechanics leads to a contradiction.

Consider the case where a current flows through a wire and an electron is flying with a

constant velocity parallel to the wire, see figure 13.1. The current in the wire creates a

magnetic field around the wire. The Lorentz force acting on the moving electron pulls it

toward the wire (depending of the direction of the current andmovement of the electron).

This is different if we change the reference system. Let’s chose the system moving with

the electron. In this system the electron does not move. As a consequence there is no

Lorentz force and therefore it will not be attracted by the wire.

This seems to be a paradox but considering special relativity, one can resolve it. We will

have a look at this at the end of this chapter when we understand relativity better.
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13 Special Relativity

Figure 13.1: In the first reference frame (left) the electron (black dot) is moving parallel to

the wire through which a current flows. The current creates a magnetic field which causes

a force acting on the electron (Lorentz force). The system left moves with the electron.

Since the electron is not moving, no Lorentz force is acting.
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13.2 Galileo transformations

In order to understand the basic concepts of relativity such as transformation from one

reference system to another, lets first have a look at these concepts in classical mechanics.

There the transformation from one reference system to another is called Galileo trans-

formation. But before we start with the Galileo transformation we have to define what a

reference system, also called frame of reference, is and which kind of frames we will look

at2.

13.2.1 Reference System

To describe physics it is often very useful to describe it in a reference system. A reference

system consists in a choice of an origin and three axis. Usually one takes the axis pairwise

orthogonal which is then a Cartesian coordinate system3. In this system each object has

at every time t a certain position ~x(t). The origin is usually fixed at a certain object
such as the sun if one wants to describe the motion of the planets or one edge of a desk

when describing the motion of a ball on the desk. As a consequence the object which is

connected to the origin does not move in that frame of reference because it has for all

time the position ~x(t) = ~0. If we fix the origin at a certain object X (X is here the name
of the object) we say that we describe the problem in the reference frame of X or in the

rest frame of X. For example in chapter 13.1.2 we described the problem in the reference

system of the wire (left) and in the system of the electron (right)4.

Sometimes we will give our reference frames names, for example we will often denote

two frames as Σ and Σ′. One then says that a property, for example time or position, are
measured in some (specific) frame. This sounds often pretty abstract and it is sometimes

useful to visualize it. One convenient visualization is to think for example Σ as the rest

frame of the earth. So measuring a quantity in Σ means that someone (for example you)

is standing on the earth and measures this quantity. If there are two frames involved it

is often easy to think about a space ship as the second frame Σ′. For this assume that a
colleague of you flies in a space ship and performs his own measurement.

There are different names for the most important and most common reference frames.

2The description of the transformation between arbitrary reference frames is described by general rela-

tivity.
3One could also take polar or spherical coordinates. The choice depends on the symmetry of the problem

but in many cases Cartesian coordinates is a good choice (at least to start with).
4In that example it was not necessary to chose concrete axes so we left it out.
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Rest frame

As already defined above this is the system which is connected to a certain object. This

object will then rest in that system, therefore it’s the rest frame of that object.

Laboratory frame of reference

This is usually the system where we start describing a problem. If one performs a mea-

surement this is the rest frame of the experiment.

Centre-of-momentum frame

This is the frame where the total momentum is zero. If the momentum is conserved5,

the total momentum will stay zero which often simplifies the calculation.

Inertial frame of reference

Since this is a very important type of reference frame lets have a closer look at it in the

next chapter:

13.2.2 Inertial frame of reference

Of particular importance is the inertial frame of reference. It is a frame where Newtons

laws are valid6. In particular this means that if no force is acting on an object, this object

will not move or move with a constant velocity.

For example the earth is approximately an inertial frame7 because any force acting on an

object (for example gravity) is proportional and parallel to the acceleration. It is not really

a inertial frame because the earth is moving around the sun and rotating around its axis,

therefore it’s accelerated and there are fictitious forces such as the centrifugal force or

Coriolis force.

If we look at a space station, for example the ISS, orbiting around the earth we might

think this is an inertial system. But in fact it is not because all the masses in the space

station seem to be weightless (for example a pen floating), although there is a gravitational

force.

If we once found an inertial frame of reference then any system moving with a constant

velocity to that system is also an inertial system. In Newtonian mechanics this is obvious.

Lets assume the frameΣ is an inertial system and that the system Σ̃ is moving with velocity

5This means no external forces act on our system.
6This means a force acting on an object is proportional to its acceleration: ~F = m~a.
7Neglecting relativistic effects due to gravity.

314



13.2. GALILEO TRANSFORMATIONS

v(t) measured in Σ. If a force F (measured in Σ) is acting on an object the object gets
accelerated with a = F

m , since it is an inertial frame of reference. If in Σ̃ the same force

F̃ and the same acceleration ã is measured, then Σ̃ is also an inertial system. This gives

us restrictions on the velocity v(t) because since

a = ã+
dv

dt
= ã

where the first step is simply the transformation of the acceleration between two reference

frames (in Newtonian mechanics) and the second step is the assumption that the two

accelerations are equal. The consequence is that dv
dt = 0 and therefore the velocity is

constant (including v = 0). This means that Σ̃ is an inertial frame if and only if it is

moving with constant velocity or it is displaced by a constant vector or rotated by a fix

angle with respect to Σ (assuming Σ is an inertial system).

13.2.3 Galileo Transformation

Now we have enough definitions to look at the Galileo Transformation. This trans-

formation describes how time and space transform between different inertial frames in

classical mechanics. Let Σ and Σ′ be two inertial frames of reference8. In classical me-
chanics there is no reason why the time in one frame elapses slower or faster than in the

other9. This means the time in both frames is the same or mathematically t = t′. This
is the transformation of time between the two systems. To examine the transformation

of space, assume that the axis in the two systems are parallel to each other and that Σ′ is
moving with a constant speed along the x axis of Σ (see figure 13.2). In Σ the origin of

Σ′ has therefore the coordinates

OΣ′ =

 vt
0
0

+

 x0
0
0


where x0 is the position of the origin of Σ

′ at t = 0 measured in Σ. This means that a
point ~r′measured in Σ′ has the coordinates ~r in Σ

8We denote all quantities measured in Σ′ with a prime ′ and if measured in Σ without.
9They might have a different zero point of time and therefore the time differs by a constant. But this

constant has no influence on the the physics so we can without loss of generality set it to zero.
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~r =

 x
y
z

 =

 vt
0
0

+

 x′

y′

z′

 =

 vt
0
0

+ ~r′.

This means that the y and z coordinates of the two systems are always the same, eg.
y = y′ and z = z′. The x coordinate transforms as x = vt+ x′ or x′ = x− vt.

Figure 13.2: The two frames represented by their axis. One is moving with respect to the

other along the x axis with the speed v.

If we put all the transformations together we get

t = t′

x = vt+ x′

y = y′

z = z′

where obviously time and space only mix at the x component. Sloppily said: time influ-
ences measurements of space but not the opposite. This will be different in relativity.
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13.3 Lorentz transformation

In this chapter we will will describe the basic transformation in relativity. Further phe-

nomena will be discussed in the next chapter.

13.3.1 Einstein’s Postulates

All the special relativity can be derived by two assumptions about nature. These assump-

tions are called Einstein’s postulates which are:

1. The laws of physics are the same in all inertial frames of reference.

2. The speed of light, denoted by c, has a finite value10.

Sometimes the postulates are formulated in a slightly different way but the conclusions

remain the same. In the regime of classical mechanics and considering the definition of

inertial frames it is clear that the physics in all inertial frames is the same11. In relativity

we have to state this explicitly because we cannot assume any more that the acceleration

in two frames has the same value. The second postulate needs some more explanation.

What is called speed of light is in fact a much more important speed, namely the speed

of information. A precise discussion about this would go beyond this scope and is not

important to understand relativity. So we only illustrate this at a small example. Consider

two objects that interact with each other, for example by electromagnetic or gravitational

forces. Then this interaction only happens with the speed of light, which means that one

object ”sees” or ”feels” the other object where it was some time before. This is because

the information where the objects are spreads out with the speed of light, so the objects

have already moved a bit before one sees their position.

Without calculation we can already now state some interesting things.

• Since the physics is in all inertial frames the same and the speed of light is a physical

property, the speed of light has the same value in all inertial frames, independent

of the movement of the light source of the observer.

• Since the speed of light is the maximal possible speed12, the addition of velocities

will not behave the same as in classical mechanics.

10The value of c is c = 299′792′545.8 m·s−1

11At least if the speed of light is considered infinite.
12Because if something is faster than light it could deliver informations faster than light which is in con-

tradiction to the fact that informations cannot be delivered faster than light
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In the following we will always look at inertial frames of reference because for all other

frames one needs one more postulate which leads to general relativity.

13.3.2 Synchronisation of clocks

Since time will not be an absolute quantity13 in relativity we have to find a method how

we can synchronise two clocks. Two clocks are synchronised if they ”show” the same

time, where ”show”means that if we look at two distant clocks wemight see two different

times because the light from the clock further away needs longer to reach our eyes than

from the nearer one. If the distance from the observer to each clock is the same then

the observers sees the same time on the two synchronized clocks. In fact the ”show” is

defined more precisely by the process of synchronisation. For the synchronisation we of

course neglect all effects that might happen in a real-life experiment such as imprecise

clocks or delayed detectors and so on.

To synchronize two clocks we send out one light pulse at the time t0 from one clock, we

call it clock 1, to the other, clock 2. There it is (immediately) reflected and it returns to

clock 1. The whole time from clock 1 to clock 2 and back to clock 1 we denote as ∆t.
Clock 2 is now set such that at the time the light pulse arrived it would have shown14

the time t0 + ∆t
2 . We therefore have constructed the synchronisation such that two

light pulses which are send out at the two clocks at the same time meet exactly in the

middle of the two clocks. As we will see later, simultaneousness is not in all frames the

same, therefore it does not make sense to synchronize two clocks in different frames of

reference.

13.3.3 Time dilation

Let’s start examine how the different quantities transform from one inertial frame to

another. We start with a time interval. Already now it shall be pointed out that the

transformation of time itself behaves differently than the transformation of time intervals,

which can be seen in section 13.3.6. To investigate the transformation of time intervals

we need a clock or even more fundamental something that creates a periodic signal. The

simplest clock is the so called light clock, which is shown in figure 13.3. A light clock

consists of two mirrors between which a short light pulse is trapped. Assume we observe

a light clock moving parallel to the mirrors with a constant velocity v. The frame we

13Absolute time means time does not depend on the position and the reference frame.
14This looks like we have to set the time of clock 2 before we actually know which time we have to set.

But this is not necessary because clock 2 can remember the time the light pulse arrived and then comparing

with the time t0 +∆t at clock 1 one can calculate by which amount one has to change the time at clock 2.
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observe the moving clock we call Σ and the rest frame of the clock Σ′. One period ∆t′

in Σ′ is then the time the light needs to make one complete cycle, which is

∆t′ =
2L′

c

where L′ is the distance between the mirrors and c is the speed of light, which is the same
in all frames (an therefore there is no ’).

Figure 13.3: Left: the light clock in the rest frame of itself. The light pulse is moving

up and down between the mirrors. Right: The same light clock observed from a frame

which is moving with respect to the clock. The light is not moving straight up and down

but makes a zigzag.

In our system we see the same distance between the mirrors15, soL = L′. InΣ, however,
the light does not move perpendicularly to the mirrors, as the whole clock is moving. The

Period is defined as the time the light needs to go from one mirror to the other and back.

In Sigma this is

∆t = 2
L

v⊥

15This would follow if one derives relativity more rigorously but this would need more math and would

not give more insight.
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where v⊥ is the velocity perpendicular to the mirrors. Using Pythagoras one can calculate
v⊥ and one gets for ∆t:

∆t = 2L
1

v⊥
,

= 2L
1√

c2 − v2
,

=
2L

c

1√
1− β

= γ∆t′,

where β and γ are often used short cuts defined as

β =
v

c
,

γ =
1√

1− β2
.

This means that if on a clock in Σ′ one time interval passes, for example one second, in
our frame Σ more time passes, for example one and a half seconds. Since both systems

are inertial systems one cannot tell whether one is moving or the other. Therefore it does

not depend whether we look at a light clock or a (Swiss) watch, all will show the same time

and therefore show the phenomenon described above. This means we see the clocks in

a moving frame going slower than ours. This phenomenon is called time dilatation.

13.3.4 Lorentz contraction

Similar to time we can have a look at distances. Since we don’t know yet how distances

transform, we cannot simply compare an unknown distance with a meter stick in in two

different systems16. Since the speed of light is constant in all systems, we can reduce this

problem to measuring the time the light needs to pass a certain distance. First we notice

that distances perpendicular to the direction of motion do not change17. This is because

if the light moves perpendicular to the direction of motion there is no difference in time

whether they move in one or the other direction (to understand this, keep on reading).

A first (wrong) approach to get the transformation for distances parallel to the direction

of monition might be∆L = c∆T which then would lead to∆L = γ∆L′ which means

16We don’t know how long a meter seems in a moving system.
17We have already implicitly used this at the derivation of the time dilatation.
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that a moving object seems longer than in its rest frame (which is wrong). The mistake in

our derivation happened because we did not take into account that in a moving system,

the time the light needs for a certain distance depends weather the light propagates in the

direction of flight or opposite (see figure 13.4). In fact, moving objects seem shorter than

in the in their rest frame.

Figure 13.4: 1): Sending out a light pulse. 2) Arrival of the light pulse at the mirror after

the time∆t1. 3) Reflection of the light at the mirror (this happens immediately). 4) Arrival
of the light pulse at the detector, the time the light needs from the mirror to the detector

is ∆t2.

To get the right result we have to do the following: We send out a light pulse along the

direction we would like to measure. At the other end of this distance we place a mirror

which reflects the light pulse. The time the light needs to pass the distance source-mirror

we denote by∆t1. The time from the mirror to the detector by∆t2. Measuring the time
for twice the distance (∆t1 + ∆t2) and dividing it by 2c we get the right length. In the
rest frame this is easy because the time to the mirror and back are the same. We denote
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this distance∆L′ (we call this the system Σ′ again since we want to measure it from our

system Σ. Therefore Σ′ is the moving system with respect to our system Σ). The time
for the distance in Σ′ is therefore∆t′ = ∆L′

c . In Σ we get for∆t1 and∆t2

∆t1 =
∆L

c− v
,

∆t2 =
∆L

c+ v

where the denominators are given this way because the light pulse moves in the same or

opposite the direction of flight. The fact that we simply add or subtract velocities is no

contradiction to the statement above because there is no particle moving with c+v. The
term c + v appears because the light pulse and Σ′ are moving. From time dilatation we

know that ∆t1 +∆t2 = γ(∆t′1 +∆t′2) = 2γ∆t′ and using some math we get

∆t′ =
1

2γ
(∆t1 +∆t2)

∆L′

c
=

1

2γ

(
∆L

c− v
+

∆L

c+ v

)

=
2c∆L

2

√
1− v2

c2

c2 − v2

=
∆L

c

1√
1− v2

c2

∆L′ = γ∆L.

Since γ ≥ 1, a moving object seems shorter than it is in its rest frame.

13.3.5 Symmetry of time dilatation and Lorentz contraction

According to the first postulate, the equations (Time dilatation and Lorentz contraction)

look the same in all inertial frames. Assume you are observing a space ship. According

to time dilatation you see the clocks in the space ship going faster than yours with∆t =
γ∆t′. A colleague in the space ship would observe the same with your clocks, namely
that your clocks move slower than his. According to the college, the equation∆t′ = γ∆t
holds.

One might now argument that from this follow ∆t = γ∆t′ = γ2∆t and therefore
γ2 = 1 which questions of course all we did (since γ > 1 if v > 0). This argumentation
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is of course wrong because we have to compare same things with same things, what we

did not. Because observing a moving clock (which goes slower than yours) one has to

measure the time at two different places (where as the moving clock in its rest frame stays

at the same position). This leads to an asymmetry in measuring the time one a clock.

13.3.6 Lorentz transformation

Similarly to theGalileo Transformations we can now calculate the transformation of space

and time between moving reference frames. To do this we first have to be aware what

we mean by transforming time and space. From classical mechanics we can keep the

definition of a (spatial) reference frame as we have defined it in section 13.2.1 but since

space and time will mix, we have to develop a new intuition for time18. For this we

imagine to have at every point in space an (imaginary) clock and each inertial frame of

reference has its own clocks. All the clocks belonging to one system show the same time

in their rest frame (see also chapter 13.3.2 about synchronisation of clocks). We can then

compare the time shown on the clocks of different frames at the same position. This

is necessary because if we compare the time shown on clocks at different positions we

would have to take into account the time the light needs from the clock to our eyes. In

relativity, this union of space and time is called spacetime19.

Let Σ and Σ′ be two inertial frames of reference with their clocks showing the time t and
t′. In the two frames, a certain point is given as ~r = (x, y, z) in Σ and ~r′ = (x′, y′, z′)
in Σ′. For convenience we chose the two systems such that the corresponding axis are
parallel to each other and thatΣ′ is moving along the x-axis with the speed v. Furthermore
we assume that the two origins at t = t′ = 0 coincide. Then the transformation is then
given as

t′ = γ
(
t− v

c2
x
)

x′ = γ (x− vt)

y′ = y

z′ = z

where γ = 1√
1− v2

c2

is the factor introduced above. Before we look at a (rough) proof,

18In classical mechanics time is absolute, which means that it is a given quantity for all frames (up to a

constant shift in time).
19Mathematically it is a 4 dimensional (vector) space but with an important difference to the usual 4

dimension (spatial) space: There is a different measure of distances, see chapter 13.4.
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we can rewrite the transformation above in order make the two equations symmetric. If

we associate time t by the distance ct and rewrite the equations in terms of ct, we get

x′ = γ
(
x− v

c
ct
)

(13.1)

ct′ = γ
(
ct− v

c
x
)
. (13.2)

To prove this transformations we basically have to repeat the steps we did deducing time

dilatation and Lorentz contraction. Hence there will be rather a sketch of proof instead

of a rigorous proof.

• The transformation of space is in principle the same as in classical mechanics (see

Galileo transformation in chapter 13.2.3). The only difference is that we have to

take into account Lorentz contraction which causes the γ factor in equation (13.1).

• For the transformation of time, we first look at the spatial dependence. This trans-

formation depends only on the coordinate that is in the direction of movement of

the two frames. When we look at the synchronisation of clocks in a moving frame

(as described in chapter 13.3.2), we observe that the time the light pulse needs in

one direction is longer than in the other. We have already observed this in the

section about Lorentz contraction (section 13.3.6). As a consequence we observe

for a moving frame that the two clocks (in the moving frame at different positions)

are not synchronous which literally means they do not show the same time20. The

time in the moving frame therefore depends on the position.

• When we look at the time dependence in the time transformation we would expect

t′ = t
γ according to time dilatation (see section 13.3.3). But there we looked at a

slightly different case than here: In section 13.3.3 we observed a time interval in

the moving frame from our (rest) frame. Here we look at the corresponding clock

that passes a certain point ~r at a certain time t. Therefore we have to calculate
which clock is at the time t at the position ~r. It is the clock that was at time t = 0
at the position ~r0 = ~r − ~vt for which we can perform a clock synchronisation at

t = 0 (denoted by t′0 and then calculate how much time in Σ
′ is passed until this

clock reached the point ~r. The synchronisation at t = 0 leads to t′0 =
x′
0
c = γ x0

c
and the time passed is then t′ = t

γ . The time dependence of ~r0 and the time itself
lead then to the given dependence in equation 13.2.

20To avoid any misunderstanding: They show the same time in their rest frame but in our system this

frame is moving and then they do not show the same time any more.
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The transformation from Σ′ to Σ is the same21 with the only difference that in Σ′ the
velocity changes sign and we get

x = γ
(
x′ +

v

c
ct′
)

(13.3)

ct = γ
(
ct′ +

v

c
x′
)
. (13.4)

Before we finish this chapter about the Lorentz transformation let’s deduce the time

dilatation from the Lorentz transformation. For this consider two points in time t1 and
t2 in Σ and t′1 and t

′
2 in Σ

′. For the time dilatation we have to observe one clock in Σ′,
which shall be located at x1 at time t1 and x2 = x1 + v(t2 − t1) at t2, whereas x

′
1 = x′2

22. We then get

∆t′ = t′2 − t′1 = γ
(
t2 −

v

c2
x2

)
− γ

(
t1 −

v

c2
x1

)
= γ

(
t2 −

v

c2
(x1 + v(t2 − t1))

)
− γ

(
t1 −

v

c2
x1

)
= γ (t2 − t1)− γ

v2

c2
(t2 − t1)

=
1− v2

c2√
1− v2

c2

(t2 − t1) =
1

γ
∆t

as we had it in section 13.3.3.

13.4 Minkowski metric

In classical mechanics a distance in the 3 dimensional space is conserved by the Galileo

transformations. This means a distance between two points has the same length in all

inertial frames.

Similarly one can define something like a ”distance” in the 4-dimensional time space

which will be invariant under Lorentz transformations. This section will examine this

”distance” and define so called four vectors.

21This is because the two systems are equivalent according to the first postulate of Einstein and in Σ′ the

velocity of Σ is −v instead of v
22Since the y and z-coordinate have no influence on the transformation, we omit them.
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13.4.1 Definition of Minkowski metric

Let Σ and Σ′ be two frames of reference. In Σ we have two points in space and time

t1, ~r1 = (x1, y1, z1) and t2, ~r2 = (x2, y2, z2). These points are often called events
because an event happens at a certain time at a certain place. In Σ′ we look at the same
points which are given according to the Lorentz transformation (see section 13.3) and

denoted by t′1, ~r
′ = (x′1, y

′
1, z

′
1) and t

′
2, ~r2

′ = (x′2, y
′
2, z

′
2). Then the ”distance” in the 4

dimensional time space given by

∆s2 = c2∆t2 −∆~r 2 (13.5)

= c2(t2 − t1)
2 − (x2 − x1)

2 − (y2 − y1)
2 − (z2 − z1)

2

= c2(t′2 − t′1)
2 − (x′2 − x′1)

2 − (y′2 − y′1)
2 − (z′2 − z′1)

2

= c2∆t′2 −∆~r′ 2 = ∆s′2

is in both frames the same (∆s′2 = ∆s2). This ”distance” is called Minkowski metric23

and it has some properties that are similar to the distances we know from 3 dimensions.

To prove that the Minkowski metric is invariant under Lorentz transformations we as-

sume for simplicity that Σ′ is moving along the x-axis of Σ with velocity v and that the
corresponding axis of the two systems are parallel to each other. Therefore we can al-

ready state that (y2 − y1)
2 + (z2 − z1)

2 = (y′2 − y′1)
2 + (z′2 − z′1)

2. So we only have

to look at time and the x-coordinate. We get

c2∆t′2 −∆x′2 = c2(t′2 − t′1)
2 − (x′2 − x′1)

2

= γ2
(
(ct2 − βx2 − ct1 + βx1)

2 − (x2 − βct2 − x1 + βct1)
2
)

= γ2
(
c2∆t2 + β2∆x2 − 2cβ∆t∆x−∆x2 + c2β2∆t2 + 2cβ∆t∆x

)
=

1

1− β2
c2∆t2

(
1− β2

)
+

1

1− β2
∆x2

(
1− β2

)
= c2∆t2 −∆x2

13.4.2 Properties of Minkowski metric

The reason why the Minkowski metric is always denoted as ”distance” with quotation

marks is that there is one important difference to distances we know from 3 dimensions.

23In some books, the Minkowski metric is defined as ∆s2 = ∆~r 2 − c2∆t2. Obviously this definition
does not change the fact that∆s2 is invariant under Lorentz transformations and the properties are also the
same (up to a sign)
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This difference is not the dimensionality. The reason is the minus sign between the time

and space part, if there would be a plus sign one would also call this a distance. The

reason is exactly that minus sign. A distance is something that has always a positive value

(or zero). However using the Minkowski metric, it is also possible to get a negative value

if c2∆t2 < ∆~r 2. This change of sign allows us to classify the ”distance” of two events:

light cone

If two events have ∆s2 = 0 we say that they lie on the light cone. This means if at the
time t1 at ~r1 a light pulse would be send towards ~r2 it would reach ~r2 exactly at t2. This
property is obvious because ∆s2 = 0 leads to

c∆t = |∆~r|

c =
|∆~r|
∆t

where the right side is the mean velocity of an object moving from ~r1 to ~r2 in the time
∆t. This velocity is the speed of light c.

timelike

In case∆s2 > 0 the ”distance” is called timelike. This means the 3-dimensional distance
of the two events is smaller than the time a light pulse needs to travel from the first to the

second event. Therefore there exists a frame of reference where the two events happen

at the same position. This frame is travelling with the speed v = |∆~r|
∆t < c. Furthermore

the condition ∆s2 > 0 means that the first event might have caused the second event.
This is because if at t1 a light pulse would be send out at ~r1, it would reach ~r2 before t2
and might therefore causes an action at t2.

spacelike

The opposite of timelike is spacelike, where ∆s2 < 0. This means light would have
longer between the spatial positions of the two events than∆t. Since the speed of light is
the highest speed for interaction there is no possibility that the first event could influence

the second one. But there is a frame of reference where the two events happen at the

same time. Since in this frame ∆t = 0 and ∆s2 independent of the frame, ∆~r 2 must

be minimal.
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13.4.3 Four vectors

A compact notation for an event is the so called four vector. A four vector is a four

dimensional vector which has as first component time multiplied by the speed of light c
and the other four components are the space components. The four vector to the event

at t1 and position ~r1 is therefore

r1 =


ct1
x1
y1
z1


where we use the convention that a four vector has no arrow above and a spatial (position)

vector has an arrow. Usually it is clear from context if a symbol represents a four vector

or a scalar. In this script we will not really use four vectors so you do not have to bother

about the distinction of four vectors and scalars.

The special feature about four vectors is that one can define a ”scalar product” for them.

We have already seen this ”scalar product” and it is nothing else than the Minkowski

metric. So the (relativistic) ”scalar product” of two four vectors is defined as


ct1
x1
y1
z1

 ·


ct2
x2
y2
z2

 = ct1ct2 − (x1x2 + y1y2 + z1z2)

13.4.4 Note on rigorous derivation

To derive relativity more rigorous one would start from the Minkowski metric. Since this

derivation would need more math but would not give more intuitive insight into relativity

we omit it. Nevertheless a very rough sketch of the derivation shall be given in order to

show the importance of the Minkowsky metric and the use of four vectors24.

From Newtons laws we know that in a inertial frame of reference a free particle25 moves

with a constant velocity. This must be true in all inertial frames because otherwise Ein-

stein’s postulate number one would be violated. From this one can conclude that the

transformations (with will lead to the Lorentz transformation) between the two frames

24If you cannot follow the sketch do not mind, you will see it in full detail if you study physics.
25A free particle is a particle on which no force is acting.
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must be a linear map. Additionally a light pulse should travel with the speed of light in

all inertial frames, therefore we search for a transformation that leaves the Minkowski

metric invariant26. The task is therefore to find the transformations for a 4 dimensional

(vector) space that leaves the Minkowski metric invariant. One then can directly deduce

the Lorentz transformation as transformation of four vectors.

13.5 Velocities

In this chapter we will take a closer look at the physical quantity velocity. We will examine

how velocities ”add” in relativity which will prepare us for the dynamical part of relativity.

Additionally we will have a look at the four vector of the velocity.

Before we start let’s repeat an important property of the velocity between to frames of

reference. Assume you are in an inertial frame and you observe a space ship passing with

a constant velocity v. From the frame of the space ship you are also moving with the

speed −v. This means the relative velocity between two frames is something constant
and not relative.

13.5.1 Addition of parallel velocities

In Σ you are observing an other frame Σ′ which is moving with a constant speed v.
Assume that with respect to Σ′ an object is moving in the same direction as Σ′ with
a speed u′ (measured in Σ′)27. The question is, what is the speed of that object in Σ?
As already mentioned, it cannot be u = v + u′ because this might be greater than the
speed of light c. To calculate the right velocity we have to go back to the definition of
the velocity and apply the Lorentz transformation28. We denote by x the position of the
object, the velocity is then given as

u =
dx

dt
=

γ (dx′ + vdt′)

γ
(
dt′ + v

c2
dx′
) =

dx′

dt′ + v

1 + v
c2
dx′

dt′
=

u′ + v

1 + vu′

c2

where we reduced the fraction be dt′ and used the definition of u′ = dx′

dt′ . The obtained

result has some interesting features:

26Because the Minkowski metric fulfils exactly the condition with the light pulse.
27This might be written a bit theoretically. So assume the following example: You observe a space ship

(Σ′) which moves with v. In that space ship some one throws a ball with speed u′ in the same direction as

the space ship is moving.
28Actually one need multidimensional analysis but since the Lorentz transformation is a linear map, the

derivative ”behaves” like the Lorentz transformation itself.
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• For small speeds (v � c and u′ � c) the denominator is nearly 1 and as a conse-
quence we get the classical result.

• If v = c or u′ = c we also get u = c.

The obtained result might lead to the conclusion that the relativistic addition of velocities

is symmetric in v and u′. But this is not the case, and would be obvious if one would
look at velocities which are not parallel to each other. The symmetry happens because

the γ in the numerator and denominator drops.

13.5.2 Addition of perpendicular velocities

Assume nearly the same setup as above (section 13.5.1) with the difference that the object

in Σ′ moves perpendicular to the relative motion between Σ and Σ′. To make a distinc-
tion to the calculation above we denote the velocities that are measured perpendicular to

v with a subscript ⊥, therefore u⊥ and u′⊥. Before we calculate the relation between u⊥
and u′⊥ lets state an important fact: Although the object is moving perpendicular to v
in the frame Σ′ it is not moving perpendicular in Σ because there it also moves with the

speed v in the direction of the relative motion between Σ and Σ′. Of course it also has a
perpendicular component which is exactly the one denoted by u⊥. This means u⊥ is not

the speed of the object inΣ, the speed would be given as
√
v2 + u2⊥. Now let’s calculate

u⊥ by following the same steps as above but using that there is no Lorentz contraction

perpendicular to the direction of motion, so x⊥ = x′⊥:

u⊥ =
dx⊥
dt

=
dx′⊥

γ
(
dt′ + v

c2
dx′‖

) =
u′⊥

γ
(
1 + v

c2
u′‖

) =
u′⊥
γ

where we used that the parallel component of the velocity if the object in Σ′ is zero29. In
case of u⊥ it is obvious that v and u

′
⊥ do not enter symmetrically the formula (v enters

the formula through γ).

13.5.3 velocity four vector

Similarly to the four vector defined in section 13.4.3 one can define four vectors for

velocities. Let r = (ct, x, y, z)be the four vector of an object moving with a constant
speed. This means at the time t that object is at the position ~r = (x, y, z). A first (wrong)
approach to a four vector for the velocity u might be

29If the object would move in an arbitrary direction (not perpendicular) we would keep u′
‖.
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u =
d

dt


ct
x
y
z

 =


c
vx
vy
vz


where vx is the x component of the velocity and similarly for y and z. But this approach
contradicts the idea of the absolute value of the four vector being invariant under Lorentz

transformations. This is because the scalar product of u with itself is given as

u · u = u2 = c2 − v2x − v2y − v2z .

Depending on the frame the velocities are different so |u|2 is not invariant.
To get the right result by an intuitive approach we have to go back at the definition of the

derivative. A derivative is basically the fraction of two quantities ∆x
∆t with the limes ∆t

going towards zero (and ∆x too). If the numerator is a four vector (as we assume here)
and the denominator is a quantity that is constant in all frames, then the whole fraction

is again a four vector that has an absolute value independent of the frame. There is one

special time, namely the proper time τ which is independent of all frames. This is the
time in the rest frame of the moving object. We obtain∆τ by the time dilatation, which
leads to∆τ = 1

γ∆t. Taking the limit for the derivative we have do replace the∆ by the

d (roughly speaking) and we get

u =
d

1
γ dt


ct
x
y
z

 = γ


c
vx
vy
vz

 .

If our construction of the four vector was successful, u · u should be invariant under
Lorentz transformations. Lets check this by considering u · u in the rest frame of the
object and in an arbitrary frame. In the rest frame the object does not move, therefore

vx = vy = vz = 0 and therefore u · u = c2. In an arbitrary frame it is moving and we
get

u · u = u2 = γ2(c2 − v2x − v2y − v2z)

=
1

1− v2

c2

c2(1− v2) = c2

where we used v2x + v2y + v2z = v2. Obviously this is invariant under Lorentz transfor-
mations and we succeeded in constructing a four vector for the velocity.
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13.6 Dynamics

Until now we only did relativistic kinematics, this means we developed a formalism do

describe the motion of an object and how this description changes by a Lorentz trans-

formation. Now we will look at dynamics. A proper description of dynamics in special

relativity as we know in classical mechanics (Newton’s laws) is more difficult. Never-

theless we can define quantities as momentum or energy which will be conserved and

which allow to calculate a lot of examples (using these conservation laws). To derive this

we start with the 3-dimensional momentum and then search for the four vector of the

momentum. From the four vector of momentum one can derive energy considerations

including Einstein’s famous formula E = mc2. At the end of this section we will briefly
look at acceleration and forces.

13.6.1 Momentum

Looking at the following example one can see that the momentum cannot simply be

~p = m~v where m is the (rest) mass of the object: We observe a space ship that moves

with velocity v along the x-axis. In the space ship two balls with speed v are moving per-
pendicular to the x-axis towards each other (see figure 13.5). When they meet the bounce
away such that they move in the x direction. From energy and momentum conservation

we can deduce that they move also with velocity v along the x-axis in the frame of the
space ship. From our system (where the space ship is moving), the total momentum of

the two balls is 2p where p is the momentum in the x-direction of each ball (since the

balls are moving towards each other, the total momentum perpendicular to the x-axis is
zero). After the collision the total momentum must be conserved. But the ball moving to

the left does not move in our frame because in the space ship it moves with −v and the
space ship itself moves with v, so the overall movement of this ball is zero. The second
ball moving to the right has according to the relativistic addition of velocities a speed of

v2 =
v + v

1 + vv
c2

=
2v

1 + v2

c2

If the momentum would be p = mv this leads to a contradiction since

pbefore = 2mv 6= 2v

1 + v2

c2

m = pafter.
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Figure 13.5: Collision and scattering of two balls in the moving space ship. Initially, the

two balls move with the velocity v perpendicular to the direction of flight of the space
ship. After the scattering they move in the same direction as the space ship.

Consequently the momentum cannot depend linear from the velocity. The right depen-

dence is given as

p = γmv =
1√

1− v2

c2

mv.

By a longer calculation one can show that the momentum defined this way fulfils the

conservation of momentum. Since there is an other method showing that this is a good

candidate for the momentum using four vectors we will look at four vectors.

One important note about the mass m: Sometimes a relativistic mass mrel = γm is

defined. This is a unsuitable definition (see section 13.6.4), when we talk about masses

we always mean the (rest) mass, so the mass measured in the rest frame of the mass.

13.6.2 momentum four vector

Since ~p = m~v is wrong, the next approach might be taking the last three components of
the four vector of velocity v andmultiply themwith the mass. And indeed this leads to the
right result. Encouraged from this success we define the four vector for the momentum

as
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p = mv = γm


c
vx
vy
vz

 .

As the absolute value of the velocity four vector is invariant under Lorentz transforma-

tions and the mass is a constant, the absolute value of the momentum four vector is also

constant with p2 = m2c2. What we don’t understand yet is the first component of the
momentum four vector, namely γmc. This will clarify in the next section:

13.6.3 Energy

The (total) energy of an object can be calculated by

E =

ˆ
F ds =

ˆ
dp

dt
ds mγc2 (13.6)

where many steps were left out including some longer calculation. Looking at the mo-

mentum four vector, we see that the first component is exactly the energy divided by c.
This means we can rewrite the four vector as

p = mv = γm


c
vx
vy
vz

 = γ


E
c
px
py
pz

 .

This discovery leads to some interesting conclusions:

Rest Energy

In the rest frame of an object one has ~p = 0 and γ = 1. Since p2 = m2c2 we get for the
rest frame

E2

c2
= m2c2

E = mc2

which is exactly Einstein’s famous mass-energy equivalence. This means the mass itself

is energy and the minimal possible energy of an object is E = mc2 the rest mass (times
c2) of that object.
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Energy-momentum relation

For an arbitrary system the absolute value square of p multiplied with c2 leads to

p2c2 = m2c4 = E2 − ~p 2c2

E2 = ~p 2c2 +m2c4. (13.7)

This equation relates the momentum of an object with its energy. Of course this energy is

the same as the one obtained above in equation (13.6) as the following calculation shows:

E =
√

~p 2c2 +m2c4 = mc2
√

γ2β2 + 1 = mc2

√
β2

1− β2
+ 1 = mc2

√
β2 + 1− β2

1− β2
.

small speed limit

If we look at small velocities the Energy as written in equation (13.6) can be approximated

by a Taylor expansion around v = 0 an one obtains

E = γmc2 ≈
(
1 +

1

2

dγ

dv2

∣∣∣∣
v2=0

v2
)
mc2

=

(
1 +

1

2

v2

c2

)
mc2 = mc2 +

1

2
mv2.

The first term is the rest energy, which is always there but the second therm is interest-

ing, since this is exactly the kinetic energy we know from classical mechanics. So in the

limit for small velocities, the kinetic energy of an object is exactly the one from classical

mechanics.

13.6.4 Acceleration and forces

According to Newton’s law of motion the force acting on a body is equal to the rate of

change of the momentum ~F = d~p
dt . Since ~p = mγ~v and m constant, the derivative is

only acting on γ~v. There are two simple cases one has to consider:

Radial acceleration

If the Force acts perpendicular to the direction of motion, as it is the case at circular

motion, the absolute value of ~v does not change. Therefore γ does not change and we
get
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~F = γm
d~v

dt

Linear acceleration

If we accelerate in the direction of motion we also have to take the derivative of γ which
is
dγ
dt = γ3 ~v

c2
d~v
dt . This leads then to

~F = m

(
γ3

v2

c2
d~v

dt
+ γ

d~v

dt

)
= mγ3

d~v

dt

Since these two cases which scale different with γ an arbitrary force is not parallel to
the acceleration any more! That’s why it makes no sense to talk about a relativistic mass

because a relativistic mass should be defined as proportionality constant between ~F and

~a. But since these two quantities are not proportional any more (except in the two cases
above), one cannot talk about a relativistic mass. So the only meaningful mass is the rest

massm, as we have defined above (see section 13.6.1).

13.7 Paradoxes

In this section we will look at some paradox which might appear when mixing classical

mechanics and relativity. Some can be resolved using special relativity, some need general

relativity and we won’t be able to totally resolve them.

13.7.1 Ladder and barn

A farmer has a ladder and a barn where the ladder is slightly longer than the barn. The

farmer wants to put the ladder in the barn but since the barn is shorter this does not work.

His idea is to put the ladder on his high speed tractor and them moves with ≈ 0.25c in
the barn. Due to length contraction the ladder should be smaller and therefore fit into

the barn (see figure 13.6. The son of the farmer, who read this script and therefore

understood relativity very well, redoes the calculation and points out that in the frame of

the moving ladder, the barn seems shorter and therefore there is absolutely no way how

the ladder would fit into the barn. Father and son decide to risk the experiment, who is

right?
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Figure 13.6: Ladder and barn. There is a door on each side of the barn such that the

farmer can drive through the barn. Left: The moving ladder and the barn in the frame of

the barn. Right: The ladder and the moving barn in the frame of the ladder.

The question ”fit into the barn or not” is equivalent to the question weather the head

of the ladder passes the second door before the back of the ladder passes the first door

or not. This is therefore a question about simultaneousness, which is of course relative.

Or to be more precise: the frame of the tractor and the frame of the barn use different

clocks and the question when which part of the ladder passes which door depends on

the time indicated on the clocks. So the father on the tractor effectively measures 30 that

the ladder does not fit into the barn whereas the son standing outside shortly sees the

ladder disappear in the barn (assuming the father drives with constant speed through the

barn).

Since the son was a curious guy he suggests the following modification of the experiment:

He installs a photoelectric sensor at each door of the barn and puts a lamp in the middle

of the barn. If the front of the ladder passes the photoelectric sensor at the second door

before the end of the ladder passes the photoelectric sensor at the first door, the lamp

gets on. This experiment should allow to take a decision whether the ladder fits into the

barn or not. What will they observe?

They indeed observe that the light goes on. In the frame of the son (standing next to the

barn) this is obvious since the ladder gets smaller as it moves. In the frame of the father

30Measure instead of see because to see something, the light needs some time to pass the corresponding

distance
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on the tractor this is not that obvious and we have to consider how the signal from the

photoelectric sensor gets to the lamp. Assume there is a cable between the photoelectric

sensor and the lamp where the signal moves with the speed of light c and that there are
no effects that delay the signal. Since the speed of light is a natural constant, both the

father and the son see it move with c. But in the frame of the father the lamp is moving
with velocity v. Therefore the overall31 effect of the second door moving with velocity
v and the signal moving with c is the same as c − v. This is opposite at the first door,
where the farmer sees an overall velocity of c + v. Although the distance between the
lamp and each door is the same, the signal from the second door reaches the lamp first

and as a consequence it shines.

In this paradox we see very nicely that there are examples in relativity which seem con-

tradictory but at a closer look there is no mistake in the theory.

13.7.2 Twin paradox

The probably most famous paradox is the twin paradox: One of the two twins makes a

space trip in a very fast space ship whereas the other twin stays at home. After several

years the first twin returns and meets the other twin. The one who made the trip is much

younger than the one stayed at home.

Not knowing relativity this is astonishing because time is usually considered as absolute

which should not be influenced by movements. Knowing relativity this might be aston-

ishing because each of the twins see the other twin move and therefore the other twin

should stay younger. The point in this paradox is that one of the twins has to accelerate in

order to return to the other twin. This acceleration breaks the symmetry of the problem

and leads to the fact that one twin stays younger than the other.

The simplest way to calculate the paradox is to assume that the twin which makes his trip

moves with constant velocity v until he changes to another space ship which moves with
−v back to earth. The clocks of the two space ships are set such that they have the same
time at the moment they meet and at the position they meet.

13.7.3 Solution to the flying electron problem

We now want to go back to the problem from the beginning, namely the flying electron

(see section 13.1.2). For simplicity we assume that the electrons in the wire move with

31This is the addition of two relative (and parallel) velocities measured in the same frame and not the

relativistic velocity addition discussed in section 13.5.1.
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the same speed as the electron above the wire32. Furthermore we assume that in the lab

frame (where the electron is moving) the wire is neutral, this means the distance between

two neighbour positive atoms and the distance between two neighbour negative electrons

is the same. Let’s denote this distance with L.
First of all we have to state that from the point of the lab we see the distance of two

neighbour moving electrons in the wire with a Lorentz contraction. Therefore their dis-

tance (in the direction of flight) in their own frame is L′
e = Lγ where the γ = 1√

1−β2

and β = v
c the velocity in terms of c. If we now look at the frame of the moving elec-

tron, the electrons in the wire are not moving any more (by our assumption above), their

distance is therefore L′. Additionally the positive atoms are moving which leads accord-
ing to the Lorentz contraction to a distance between neighbour atoms of L′

p = 1
γL. As

a consequence the density of the positive atoms is bigger than the one of the negative

electrons, the wire is therefore electrically positive charged. This positive charge leads to

an attraction of the single electron, similarly we observe in the lab frame.

This example show how important relativity is in electrodynamics. Without relativity

electrodynamics would not be a consistent theory, meaning that different observers would

observe different result of one experiment. Nevertheless one needs a bit more math to

precisely formulate electrodynamics with relativity.

32One can do the whole calculation without this assumption which leads to the same result but needs a

longer calculation respectively is less intuitive.
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Chapter 14

QUANTUM MECHANICS

Werner Heisenberg was driving in his

car, thinking about the problem of

time. Suddenly a police car appeared

and stopped him. The policewoman

asked: “Do you know how fast you

were driving?”. Upon which

Heisenberg answered: “Do you know

where I have been?”.

Exercise: why was he fined nontheless?
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Classical mechanics describes how particles or bodies behave in time. So it characterises in

which way a particle moves. In Newtonian mechanics the main formula that characterises

the way particles move is ~F = m~a. One then assumes that the particle moves according
the the formula above on a well defined path. At the end of the 19th century some

phenomena did not fit to the predictions of classical mechanics. A new description was

developed which is called quantum mechanics.

Quantum mechanics describes also how a particle behaves in time but the laws are very

different of those of classical mechanics and intuitively not really understandable. The

main idea is that a particle does not move on a well defined path but the probability to find

it at a certain location is connected to wave properties. This chapter shows the phenom-

ena which did not fit to classical mechanics and what changed in the description switching

to quantum mechanics. Then some concepts of quantum mechanics are discussed. Since

the general description of quantum mechanics is pretty complicated the concepts are dis-

cussed in a more intuitive way. At the end we will look how a rigorous calculation in

quantum mechanics looks like. This rigorous calculation is surly not necessarily to know

for the Olympiads (not even for the IPhO) but it should show how quantum mechanics

really looks like. The main sources for this chapter are [46], [47] and [48].

14.1 Experiments

We want to look at some experimental setups and discuss how quantum mechanics

changed the understanding of physics and what the main statements are.

14.1.1 Black body radiation

A body with a certain temperature T emits electromagnetic waves, called radiation. De-

pending on the surface, the body can emit electromagnetic waves for certain frequencies

better than for others. If there are two bodies and one body is hotter than the other,

energy can only go from the hotter to the colder body. Therefore for any frequency the

capability of a body to absorb an electromagnetic wave is the same as the capability to

emit a wave.

A black body is a body which absorbs all electromagnetic waves. As a consequence it

also emits waves very well. If a body absorbs an electromagnetic wave it gets heated up

by the energy of the wave. The emission of an electromagnetic wave is also due to the

thermal energy of a body.

A surface which has the property of a black body can by achieved if one takes a closed

cavity with a little hole (see figure 14.1). The area where the hole is behaves like a black

body because at the spot where the hole is all the incident waves will go into the cavity
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and are therefore absorbed by the body.

Figure 14.1: A cavity with a little hole [49].

Inside the body there are some other interesting properties: Since all the walls of the

cavity have the same temperature there is no net flow of energy from one wall to the

other. Therefore the electromagnetic waves inside the cavity have a intensity such that

the emission and absorption at the walls is in an equilibrium. We assume the hole to be

very small, therefore at the hole the radiation is the same as inside the cavity. Since the

hole behaves like a black body the electromagnetic waves inside the cavity look like they

were emitted by a black body, although the walls of the cavity need not to be black. This

is because the electromagnetic field and the walls are in an equilibrium.

At the end of the 19th and beginning of the 20th century there was a big discussion about

the question how the power that a black body radiates is distributed as a function of the

frequency f . This means how much power is radiated between a small interval f and
f + df .
The classical approach is to model the electric field inside the cavity as standing waves

between opposite walls. According to thermodynamics any possible standing wave has

the same amount of energy (equipartition theorem). But for higher frequencies also diag-

onal standing waves can happen therefore the number of standing waves per frequency

is not fix. Since usually the dimension of such a cavity is in the order centimetre and the

wavelength of light is in the order of 500 nanometres the discrete difference between
two successive frequencies is very small and we treat the spectrum continuous. A rig-

orous calculation then gives that the number of standing waves between f and f + df
is
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g(f)df =
4πf2V

c3
df

where V is the volume of the cavity. We see that the number of standing waves of a

certain frequency is proportional to the square of the frequency (for high frequencies).

The equipartition theorem from thermodynamics states that each standing wave has the

mean energy kBT where kB is the Boltzmann constant and T the temperature. Therefore
we have an energy density (Energy per volume) inside the cavity of

ρ(f)df = kBT
8πf2

c3
df

This law is called Rayleigh-Jeans law (see picture 14.2). The additional factor 2 appears
because there are two possibilities of polarisation. The big problem is that the energy

density for high frequencies goes to infinity. Therefore in the cavity should be infinite

energy which is of course not possible.

In 1900, Max Planck introduces an other idea: He said that the energy of light (of a

certain frequency) does not have an arbitrary amount. Instead he claimed that light at a

certain frequency has a smallest amount of energy which is given by E0 = hf where h is
the Planck constant with h = 6.626 · 10−34J·s. He did not believe that his assumption
describes a real property of nature, he just tried to do the calculation a bit different. The

calculation lead to the formula

ρ(f)df =
8πhf3

c3
1

e
hf

kBT − 1

The additional exponential in the denominator causes the curve to get small for high fre-

quencies. The curve is drawn for different temperatures in figure 14.2. Themeasurements

confirm Plancks calculation.

Since for small frequencies: e
hf

kBT − 1 ≈ 1 + hf
kBT − 1 = hf

kBT the Rayleigh-Jeans law is

therefore an approximation for small frequencies.

This was then the beginning of a new theory, the quantum theory. The introduction

of the smallest energy E0 quantises the energy of an electromagnetic field. Therefore
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Figure 14.2: Radiated intensity for different temperatures. The x-axis is the wavelength

and it is obvious that for high frequencies (small wavelength) the intensity according to

Plancks calculation gets small. For the callsical approach the intensity goes towards infinity

[50].

electromagnetic waves behave like waves but have also quantised property which suits

more to the model of particles than waves. This particle property gets clearer in the next

chapter.

14.1.2 Photoelectric effect

If one shines light on a charged metallic plate one can observe that the plate loses charge

with time. To examine this effect let’s look at the experimental setup shown in figure

14.3. We shine light with a frequency f on the left metallic plate. We will see that this
plate loses electrons therefore we call it cathode. Parallel to this plate we have an other

plate where no light shines on, we call it anode. Between these two plates we connect

a voltage source with variable voltage U . We define U > 0 if the cathode is connected
to the plus pole of the voltage source (so electrons flow from the cathode to the voltage

source) and U < 0 if the cathode is connected to the minus pole. Additionally we put an
ammeter on the electric circuit in order to measure the current I that flows.
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Figure 14.3: Light shines on an metal plate (Cathode) which emits electrons. Depending

on the voltageU the electrons reach an other metal plate (Anode). If they reach the anode

the electric circuit is closed and a current flows which is measured at the ammeter (A) [51].

Dependence of voltage U

We see that for all voltages that are smaller than a certain voltage Ut (also called threshold

voltage) there is a current flowing from the anode to the cathode. Since metallic atoms

can not really leave the metallic plate we conclude that the electrons move. Since the

electrons are negative charged and the current flows from the anode to the cathode, the

electrons move from the cathode to the anode. The light seems to hit out electrons at

the cathode and they travel to the anode. The existence of Ut (for a certain intensity) is

reasonable because for higher voltages the electrons need more energy to fly against the

electric field between the anode and cathode.

Dependence of intensity

If the voltage is smaller than the threshold voltage U < Ut we recognise that the current

is proportional to the intensity. This seems also reasonable because if we shine with more

light on the cathode there will be more electrons hitting out and reaching the anode (until

saturation effects occurs).

For a certain intensity the existence of a maximal voltage Ut is reasonable because if

we raise the voltage the electrons need more energy to overcome the electric field. The

remarkable thing that the experiment shows is, that Ut is independent of the intensity.

This means that an electron does not collect energy from the light until it can leave the

cathode and reach the anode. Instead it gets once a certain amount of energy and if the

energy is big enough to leave the cathode and reach the anode the electron will do so.
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Therefore the energy from the light is concentrated in small packets. We call this energy

packets photons.

Dependence of frequency

If we change the frequency of the light we see that the threshold voltage also changes. If

we rise the frequency the threshold voltage also rises. The dependence seems to be linear

function which is drawn in figure 14.4. Therefore the energy of a photon is proportional

to the frequency. The y-intercept can be interpreted as the work that has to be applied to

the electron in order to extract it from the metallic plate. The work to leave the plate is

therefore V0e where e is the charge of an electron.

Figure 14.4: Dependence of the cut-off potential Ut on the frequency f [52].

Interpretation

As we already stated, the energy of the light does not flow continuously but in small

packets. We can read out the amount of Energy per frequency of figure 14.4 by taking

the slope of the linear function. If we do this, we get that the slope is h, the Planck’s
constant. Therefore the energy of such an energy packet is given by E = hf as we
already assumed in chapter 14.1.1.

The intensity of the light is only a measure of how many Photons arrive at the cathode

per second.

Light is therefore on one hand a wave because we have wave phenomena like refraction

and diffraction (see chapter 14.1.3). On the other hand it has particle-like properties

because its energy (and also its momentum) travels in small packets. This shows the very

unintuitive nature of quantum mechanics.
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14.1.3 Double slit experiment

The double slit experiment is an experiment which points out the wave property of quan-

tum objects. This experiment (see figure 14.5) consists of a light source which emits light

with a wave length λ and a wall which absorbs light except at two small slits (small com-
pared to the wavelength) which are separated by a distance similar to λ. The light can go
through these to slits and is measured on a screen.

Figure 14.5: Double slit experiment: The source shines on the wall which gives a pattern.

There are two different pattern shown. In the left pattern the intensity I1 from the first

slit (upper one) is drawn if we block the second slit and also the intensity I2 from the

second slit if we block the first one. Additionally the sum I = I1 + I2 is drawn. The
right pattern is the wave pattern which one expects when a wave hits both slits and gets

diffracted [53].

Let’s now discuss what we measure on the screen and what happens if we change the

setup slightly:

Normal setup, no change

The light behaves as a wave and gets diffracted at the two slits. This means that we have

to treat each slit as a source of new spherical wavesA1 andA2 and then for each point on

the screen add the amplitudes from each slitA = A1+A2. The measured pattern is then

proportional to A2 because we measure the intensity. Therefore we get an interference

pattern (the right pattern in figure 14.5).
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Closing one slit

If we close one slit the light goes only through the other slit. There a spherical wave is

caused which hits the screen making a pattern like I1 (or I2 if the first slit is closed).

Measuring the path

If we have both slits open we get a diffraction pattern as described above. Thinking the

light to be a flow of photons which (should) behave like particles wemight be interested in

measuring through which slit the individual photons pass. Therefore we install a detector

which measures where the particles come from. As soon as the detector is installed and

measures, the light behaves differently: The diffraction pattern disappears and we get a

pattern as if the particle would fly through one or the other slit, therefore we get the left

pattern in figure 14.5. This (process) is called collapse of the wave (function) because the

wave property is disappeared. We state that the measurement influences the outcome of

the experiment, which is typically for quantum mechanics.

Very low intensity

If we reduce the intensity until only one photon is emitted at a time we will also get

the interference pattern if we wait long enough (see figure 14.6). Therefore each single

photon interferes with itself.

Figure 14.6: The light shines with very low intensity such that single phtons reach the

screen. On the left side the beginning of the experiment is shown where not many phtons

hit the screen. On the right side many phtons hit the screen and an interference pattern

is visible. [54].
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The pattern is then no intensity distribution any more because single photons produce

only small dots. The light dots show that light hits the screen as a small packet (in fact it

is not possible to see a photon hitting an usual screen. But if one replaces the screen by

a very sensitive detector it is possible to measure single photons). Therefore the pattern

is the sum of all these photons and it is proportional to the probability that a photon

interferes to that position.

We can also switch on the detector to measure through which slit a photon passes. If we

do so we measure again a probability distribution like the left pattern in figure 14.5.

Interpretation

Since the behaviour of the experiment does not change if we perform it with single pho-

tons we have to describe the observations by behaviour of single photons (and not by

the interaction of many photons). We relate the fact that a photon is a light packet to a

particle property. Therefore a photon is a particle which travels and if it hits the screen

we see a dot like we would expect if a ball hits a wall. The interference pattern however

is clearly caused by a wave property.

If we combine these two properties we get that light is a flow of particles and the proba-

bility to find a particle is connected to a wave like probability distribution. If we describe

the light this way we can also explain intuitively the collapse of the wave when we perform

the measurement of the path. Because in that moment we see the photon going through

one slit the probability to find that photon in the other slit is zero. Therefore the photon

starts its wave like behaviour from the slit we observe it and therefore it gets an other

probability distribution.
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14.2 Laws of Quantum Mechanics

As we have seen in the experiments above quantum systems behave pretty different to

what we know from classical mechanics. We now want to examine some basic properties

of quantum mechanics. Since the general description is too complicated for this level we

will not be able to derive all laws and understand all connections.

14.2.1 Wavefunction and probability

As we have seen in the double slits experiment the probability P is proportional to the

square of the superposed light waves P ∝ (E1 + E2)
2 where E1 is the electric field

coming from the first slit and E2 from the second slit. Therefore the interference is

due to the fact that one takes the sum and then squares and not the other way round

(E1 + E2)
2 6= E2

1 + E2
2 .

If we describe quantum systems generally we have a functionΨ(x) which is called wave-
function and which assigns to each place x a value Ψ(x). The probability P to find a

particle at a certain place x is then given by P = |Ψ(x)|2. The absolute value is necessary
if the function Ψ is a complex number.

The probability P is a probability distribution. This means that the probability to find

the particle at exact the position x0 is zero vor every x0. It’s like shooting a football on a
target: It is impossible to hit the target exactly in the middle and if it seems one has hit it in

the middle you have to look more precise (perform a more exact measurement) and you

will find out that it was not the middle. Therefore the probability has to be understood a

bit different: The probability P12 to find a particle between x1 and x2 is

P12 =

x2ˆ

x1

P (x)dx =

x2ˆ

x1

|Ψ(x)|2dx

Therefore one can understand a probability distribution (of the place) as Pdx is the prob-
ability to find a particle between x and x+ dx.

14.2.2 Measurement

If we perform a measurement the wave behaviour (of the measured quantity) of a quan-

tum mechanic particle disappears and we get a concrete value (with a certain uncertainty,

see chapter 14.2.4). If our wavefunction Ψ(x) is related to the probability to find the
particle at a certain position x (to be more precise to find it between x and x+ dx) and
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we measure the position we get a value of the position of the particle according to the

probability distribution.

But if Ψ(x) is the wavefunction to find the particle at a certain position and we mea-
sure the momentum of the particle we will not get a momentum distribution according

to |Ψ(x)|2. To get the probability distribution |Φ(p)|2 for the momentum p with wave-
function Φ(P ) we have to make some more calculations which we do not treat here. But
we recognise that performing a measurement of the momentum knowing the position

distribution is similar to transforming the position distribution to the momentum distri-

bution. Therefore measurements are associated to operators: The measurement of the

momentum is like an operator p̂ which acts as p̂(Ψ(x)) = Φ(p)Ψp(x) where Ψp(x) is
the wavefunction with |Ψp(x)|2 describes the probability distribution to find the particle
with momentum p at the position x (for any momentum p we get a certain distribution
Ψp(x)). If we measure the momentum we measure a concrete value p0 with wavefunc-
tion Ψp0(x). If Ψp0(x) 6= Ψ(x) we get an new wavefunction. This means that the

measurement might changes the behaviour of the quantum system.

14.2.3 De Broglie hypothesis

Until now we only looked at the photon as quantum object. In 1924 De Broglie stated

that any object is a quantum object which behaves according to quantum laws. Since

quantum physics works with waves we have to contribute a wavelength to each object.

De Broglie stated that the wavelength λ of any object is given by

λ =
h

p
(14.1)

where p is the momentum of the object and h = 6.626 · 10−34J·s the Planck constant.
Therefore big objects with a high mass have a very small wavelength. This is also the

reason why we do not experience quantum effects in every day life. Because to get the

typical properties of a wave the wave has to hit structures which have a similar size as

the wavelength (for example diffraction is nearly not observable if slits are very far away

from each other). Since the wavelength of objects around us (like a football) is very small

(≈ 10−34m) there exist no slits or something similar with such a small distance (Atoms

have a diameter of ≈ 10−10m). Therefore no interference phenomena occur with every

day objects.

But one can take for example electrons or atoms and perform similar experiments as

the double slits experiment (see chapter 14.1.3) and one get also the wave behaviour of
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those particles.

A comment to the photon. From relativity there is the equation

E2 = c2p2 + c4m2

with E the energy, p the momentum, c the speed of light and m the mass (to be more

precisely the rest mass). Since the photon has no mass, one gets that E = pc. If we put
this in equation (14.1) we get λ = hc

E and using λf = c we have E = hf as we stated at
the black body radiation and the photoelectric effect (chapter 14.1.1 and 14.1.2).

14.2.4 Uncertainty Principle

If we want to measure the position of a quantum object we might use light. A limitation

of the measuring precision is the angular resolution: To distinguish two objects which

are separated by a distance l we need light with a wavelength λ < l. Otherwise the
interference patterns of the two objects in our eye (or on the film in a camera) are too

close to each other to distinguish them. If we want to measure the position of a quantum

object very precisely we need light with very low wavelength. But light with very low

wavelength has a very high momentum and if the light of our measurement interacts with

the quantum object, the quantum object might gain a lot of momentum. Therefore we

know its position very well but we know nothing about its momentum.

Heisenberg stated that the uncertainty of the position σx and the uncertainty of the mo-
mentum σp are not independent. There is a natural bound which avoids that we can
measure the position and the momentum very precisely. The Uncertainty Principle is

σx · σp ≥
h

4π

where h is again the Planck constant.
This inequality does not only hold if we measure with light, it is a fundamental uncertainty

and independent of the measuring method.

There is also an uncertainty of the time and energy which is given by

σE · σt ≥
h

4π

where σE is the uncertainty about the energy and σt about time.
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14 Quantum Mechanics

The uncertainty principle is an interpretation of the diffraction of a quantum object at

a very small slit: The smaller the slit is the more precise we know where the particle is

when it crosses the slit. But a small slit produces a wide diffraction pattern, therefore the

smaller the slit is the less we know about the momentum perpendicular to the slit.

14.2.5 Schrödinger Equation

Until now we never discussed how a quantum system changes with time. This has its

reason because the time evolution is described by the Schrödinger equation which is a

pretty complicated differential equation. Therefore this chapter is more to give a complete

overview over quantummechanics and it is absolutely not relevant to know or understand

the equations.

Let Ψ(x, t) be the wavefunction of a quantum particle along the x-axis which also de-

pends on the time t. The (time dependent) Schrödinger equation is given by

i
h

2π

∂Ψ

∂t
= − h2

8π2m

∂2Ψ

∂x2
+ V (x)Ψ (14.2)

where i is the imaginary unit, m the mass of the particle and V (x) the potential energy.
The ∂Ψ

∂t is the derivative with respect to the time. The reason why we used ∂ instead of
d is because Ψ depends on the time t and the position x and by using ∂ we indicate that

we only differentiate according to time. ∂2Ψ
∂x2 is the second derivative with respect to x

and it is related to the kinetic energy of the particle.

The differential operator i h
2π

∂
∂t is the operator which is related to the energy distribution.

If we have a constant energy E the energy operator gives us just the energy, therefore

i h
2π

∂Ψ
∂t = EΨ. This leads to the time independent Schrödinger equation

EΨ = − h2

8π2m

∂2Ψ

∂x2
+ V (x)Ψ (14.3)

In a problem one often searches a function Ψ which solves the equation. As you can

imagine this is pretty complicated.
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14.3 Examples

We now want to look at some examples and apply the principles of quantum physics.

14.3.1 Bohr model

One big application of quantum physics is the description of atoms. The simplest atom

is the hydrogen atom with one proton as nucleus in the middle and one electron ”flying”

around the proton. Since the precise calculation of the hydrogen atom is pretty laborious

and needs much math we will derive the Bohr model. The Bohr model is a semi clas-

sical description of the hydrogen atom which is not really correct but gives some nice

predictions.

The Bohr model assumes the following properties:

• The electron orbits around the nucleus. Since an accelerated charge radiates energy,

a classical orbit, as the motion of planets around the sun, is not possible. Instead

we assume that the electron behaves like a wave with frequency f . This wave goes
around the nucleus and has to be a standing wave (this means that the ”start” and

”end” point of the wave must meet each other). These standing waves are drawn

in figure 14.7.

• If an electron changes the orbit with energy difference∆E it emits a photon with

frequency ν according to ∆E = hν.

Figure 14.7: The nucleus in the middle and two possible electron orbits. The orbits are

like closed standing waves [55].
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The first assumption leads to the restriction, that circumference of the orbit must be a

multiple of the wavelength of the electron wave. Therefore

2πr = nλ =
nh

mv

where r is the radius of the orbit and n is an integer. We also used the de Broglie

wavelength λ = h
p where the momentum is classically given by p = mv wherem is the

mass of the electron and v its velocity.

An other equation is given by the classical orbit equation where the centripetal force is

due to the electric attraction. Therefore we get

m
v2

r
=

Ze2

4πε0r2
(14.4)

where Z is the number of protons in the nucleus (which is 1 for hydrogen, but we want
to calculate it more generally).

If we combine these two equations we get

rn = n2 ε0h
2

πmZe2

where rn labels the different orbits according to n. For the smallest radius of the

hydrogen atom we get r1 = 5.3 · 10−11m

If we now calculate the energy of the electron going from an orbit with radius ra to
one with radius rb we have to take into account two terms: The kinetic energy and the
potential energy. The potential energy is given by

∆Epot =
Ze2

4πε0

(
1

ra
− 1

rb

)
The kinetic energy of the electron on an orbit rn is given by

Ekin rn =
1

2
mv2n =

1

2

Ze2

4πε0rn
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where we used equation (14.4) to express the velocity by the radius.

The total energy difference between ra and rb is therefore

∆Etot = ∆Epot + Ekin rb − Ekin ra

=
1

2

Ze2

4πε0

(
1

ra
− 1

rb

)
=

1

2

Ze2

4πε0r1

(
1

a2
− 1

b2

)
where we used that ra = a2r1 and rb = b2r1 with a and b integers.
If ra > rb the electron loses energy which causes a photon leaving the atom with the

frequency ν = E
h respectively with the wavelength λ = ch

E . For transition from the

second a = 2 to the first b = 1 orbit we get a wave length of 121nm which is clearly in

the ultra violet. Since any other transition to the first orbit has more energy, all transitions

to the first orbit are not visible. This is different for transitions to the second orbit b = 2
where we might get visible light. This is shown in figure 14.8. An important property

of the calculated energies is that they have discrete values. Therefore a hydrogen atom

has some certain frequencies which it can emit light. This frequencies correspond to the

spectral lines of hydrogen.

If we calculate how much energy is needed to take the electron from the first orbit to

infinity we get an energy of 13.6eV which agrees to the measurement.

The Bohr model is a first approach to describe the behaviour of atoms with only one

electron. The problem with the model is, that it still does not really avoid the problem

that accelerated charge radiates electromagnetic waves and therefore looses energy. Ad-

ditionally it violates the Heisenberg’s uncertainty principle. To get the precise description

of an atom one has to solve Schrödinger’s equation (see chapter 14.2.5).

14.3.2 Rigorous example

In this chapter we want to look how the calculation with the wave function looks like.

This is not relevant for any selection round, and not even for the IPhO. Since the math

is sometimes beyond this level, not anything can be derived.

The simplest case for a quantum system is when we have a particle in an interval [0, a]
where the potential is zero and infinite anywhere else (see figure 14.9).

357



14 Quantum Mechanics

We now search for static wave functions which means that they do not change with time.

This simplifies the calculation a lot because we can use the time independent equation

(14.3) instead of the time dependent (14.2). For x < 0 or x > a we get therefore

− h2

8π2m

∂2Ψ

∂x2
= (E − V )Ψ

Since E − V is something like minus infinity we see that the particle would need infinite

energy to be in this region which is impossible. Therefore the probability to find the

particle there is zero and as a consequence the wave function too.

More interesting is the region 0 < x < a because there we have to solve the equation

− h2

8π2m

∂2Ψ

∂x2
= EΨ (14.5)

If the second derivative appears it is always a good idea to think of sin(x) and cos(x).
We try to solve the equation (14.5) by attemptingΨ(x) = A sin(kx)+B cos(kx) where
A and k are constants which have to be determined. If we formulate equation (14.5) a
bit different and use the attempt we get

−8π2mE

h2
Ψ =

∂2Ψ

∂x2

−8π2mE

h2
(A sin(kx) +B cos(kx)) = −k2(A sin(kx) +B cos(kx))

k =
√
2mE

2π

h

To get a restriction onA andB we have to consider the following: at the position x = 0
the wave must have amplitude zero because there the infinite potential begins. Therefore

B = 0. Additionally we have also the restriction Ψ(a) = 0 which leads to the fact that
the argument in the sin must be a multiple of π. This means ka = nπ where n is an
integer. But this can only be the case if the Energy E has a certain value, namely

En =
n2π2h2

2ma24π2
=

n2h2

8ma2

This means that only discrete energy levels are allowed in order to get time independent

solutions. The subscript n at En indicates which energy we look at.
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To get the A we use the condition that the total probability to find the particle between

0 and a must be 1

1 =

aˆ

0

|Ψ(x)|2dx

=

aˆ

0

A2 sin(kx)2dx

= A2

[
1

2
(−1

k
sin(kx) cos(kx) + x)

]a
0

= A2a

2

A =

√
a

2

Therefore the possible wavefunctions are superpositions of the Ψn(x) which are

Ψn(x) =

√
2

a
sin(

nπ

a
x)

where the Ψn(x) has the energy

En =
n2π2h2

2ma24π2
=

n2h2

8ma2
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Figure 14.8: Transistions to the second orbit [56].
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Figure 14.9: Infinite potential (V ) for x < 0 and x > a. Additionally the first three
standing waves are shown.
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15 Introduction to Statistics

The main goal of statistical methods is to make inferences based on data. There are three

important steps in this process: Collecting the data, describing the data and analyzing the

data. While we will focus on descriptive statistics in this introduction, it is important to

mention that every step heavily relies on the previous step. If your experimental setup

does not provide good data, you will not be able to draw any meaningful conclusions

(Garbage in - Garbage out).

The main sources are [57], [58], [59], [60] and [61].

15.1 Location and Spread of a single Set of Data

Let X = {x1, x2, . . . , xn} denote a set of n data points. The mean x̄ and the variance
σ2 of X are defined as

x̄ =
1

n

n∑
i=1

xi (15.1)

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (15.2)

By taking the square root of σ2, we find the standard deviation, a common measure for

how spread the data is, which has the nice property of having the same units as the original

data. By dividing the standard deviation by the mean, we get the coefficient of variation,

an indicator for the relative spread of the data.

σ =
√
σ2 (15.3)

CV =
σ

x̄
(15.4)

Another way of better describing how data is located are quantiles. The idea is to divide

the data into equally large groups and indicate where these cuts are. As an example, when

calculating the lower and upper quartile, one quarter of the data points are smaller than the

lower quartile and one quarter are larger than the upper quartile, with the remaining half

being located between these two values. It is important to note, that for this calculation,

the data must first be sorted smallest to largest (i.e. xi−1 ≤ xi ≤ xi+1). The general

formula for calculating quantiles is then given by (15.5) for a cut at the fraction p (i.e. p
of the data points below the cut and (1−p) above the cut). As an example, for the lower
and upper quartiles one would calculate Q(0.25) and Q(0.75).

Q(p) = (1− g) · xj + g · xj+1 (15.5)
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j = bpn+
1

2
c g =

(
pn+

1

2

)
− j (15.6)

(Note that bzc designates the floor of z, i.e. the next lower integer)
Common quantiles used are quartiles (p = k

4 ), deciles (p = k
10 ), percentiles(p = k

100 )

and of course the median (p = 1
2 ), for which we can simplify the calculation:

x̃ =

{
x[n+1

2
] n odd

1
2 · (x[n

2
] + x[n

2
+1]) n even

(15.7)

15.1.1 Bivariate Analysis

If we have two sets of dataX and Y collected in parallel so that each xi is associated to its
corresponding yi, it might be interesting to measure how the data in these sets might be
connected. This can be quantified by calculating the covariance and correlation of these

sets:

Cov(X,Y ) =
1

n− 1

n∑
i=1

(xi − x̄) (yi − ȳ) (15.8)

Corr(X,Y ) =
Cov(X,Y )

σx · σy
(15.9)

Finally, if we suspect that there is a linear relationship between X and Y , we can try to
calculate a line y = a + bx that fits our data as much as possible. This is called linear
regression and is often done using the least squares method. This method minimizes

the square of the errors between the calculated line and the observed data points. The

coefficients can be calculated as shown in (15.10) and (15.11). The derivation can be

found in the appendix.

b =
Cov(X,Y )

σ2
x

(15.10)

a = ȳ − bx̄ (15.11)
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15.2 Uncertainty Propagation

When performing experiments one should always be aware of uncertainties in measure-

ments. There are many sources of uncertainties: Noise, minimum resolution, misalign-

ment, calibration, etc. To asses the impact of uncertain measurements on results of com-

plex calculations, the propagation of uncertainty has to be analyzed.

15.2.1 Quantification of Uncertainty

There are two different representations of uncertainty for a measurement. Additive un-

certainty is expressed as an absolute range by which the real value might be different from

the measured value (e.g. ±0.001m), while relative uncertainty is expressed as a fraction
of the measurement (e.g. ±0.1%). They are easily convertible into one another:

εrel =
εadd
|X|

(15.12)

Since it is often impossible to find definitive upper and lower bounds for the error of a

measurement, we usually express uncertainty in terms of the expected standard deviation

of the measurement, xreal = xm ± σxm , where σxm can be found either by performing

a measurement multiple times or by carefully assessing the different possible sources of

uncertainties (e.g. for a ruler with mmmarkings, it is reasonable to assume an uncertainty

of ±0.5mm). For this reason, we will express uncertainties as additive uncertainties δX
in this document.

15.2.2 Propagation of Uncertainty

In this section, we will consider different types of operationsR being applied to uncertain

variables X ± δX , Y ± δY and Z ± δZ , and will quantify the uncertainty δR of the

result.

• Addition of a constant

The addition of a constant will not affect additive uncertainty.

R(X) = X + c (15.13)

δR = δX (15.14)

• Addition of uncertain variables

By adding multiple uncertain variables, the variance of the result is the combined
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variance of the individual elements. However, as we express uncertainties with

standard deviation, we need to take the square root of the added variances.

R(X,Y, Z) = X + Y − Z (15.15)

δR =
√
(δX)2 + (δY )2 + (δZ)2 (15.16)

• Multiplication with a constant

By multiplying an uncertain quantity with a constant, the uncertainty is simply mul-

tiplied with the absolute value of the constant.

R(X) = a ·X (15.17)

δR = |a| · δX (15.18)

• Multiplication of uncertain variablesWhen multiplying uncertain variables, this

corresponds to adding the relative variances to find the relative variance of the

result.

R(X,Y, Z) =
X · Y
Z

(15.19)

δR = |R| ·

√(
δX

X

)2

+

(
δY

Y

)2

+

(
δZ

Z

)2

(15.20)

• General Operations

For general operations, the formula can be derived by considering the variation of

the result due to every variable and again adding them just like standard deviations.

In fact, all previous rules are just special cases of this rule and can be derived easily.

R(X,Y, . . . ) (15.21)

δR =

√(
∂R

∂X
δX

)2

+

(
∂R

∂Y
δY

)2

+ . . . (15.22)
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15.3 Units

A good understanding of the different units and their respective dimensions can be very

helpful to avoid careless mistakes.

15.3.1 The International System of Units (SI)

The International System of Units (SI, système international (d’unités)), is the most widely

used system of measurement due to its simplicity regarding unit conversions. The system

comprises seven base units from which many other units can be derived (e.g. 1N =
1 kg·m

s2
).

Dimension Unit Abbreviation

Electric Current Ampere A

Temperature Kelvin K

Time Second s

Length Meter m

Mass Kilogram kg

Luminous Intensity Candela cd

Amount of Substance Mole mol

Table 15.1: The seven SI base units

15.3.2 Prefixes

Prefixes can be used to change the order of magnitude of a unit.

Prefix Symbol Factor Prefix Symbol Factor

femto f 10−15 peta P 1015

pico p 10−12 tera T 1012

nano n 10−9 giga G 109

micro µ 10−6 mega M 106

milli m 10−3 kilo k 103

centi c 10−2 hecto h 102

dezi d 10−1 deca da 101

Table 15.2: Metric Prefixes
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15.3.3 Dimensional Analysis

We can use the fact that dimensions corresponding to the seven base units cannot be

created from any other base dimensions to quickly check equations. If an equality does

not have the same dimension on each side, then surely it cannot be true (however, the

opposite cannot be said, even if the dimensions agree there could be a mistake in form of

a dimensionless factor). To perform dimensional analysis on an equation, we replace all

involved variables with their respective dimension. We then simplify both sides to see if

the dimensions cancel each other. As an example, this technique is applied to Newton’s

second Law:

F = am

[M ][L]

[T ]2
=

[L]

[T ]2
· [M ]

15.4 Graphs

15.4.1 Elements of good graphs

When presenting your results in form of graphs, there are some guidelines that you should

respect to make your graph clear and understandable:

1. Complexity: A graph should not be more complex than the data it represents.

Avoid irrelevant decoration, 3D effects and distortion.

2. Scaling:

(a) The data should not be clumped in one section of the graph

(b) The scale should not change along one axis

(c) Your axes should include 0 and have no jumps

(d) Use simple steps, one square or tick mark could represent 1, 2, 5, 10, etc..

3. Title: Your graphs should have a descriptive title that contains information about

the origin of the data.

4. Multiple Data Sets: If your plotting multiple sets of data on the same graph, make

sure they’re easily distinguishable and include a key/legend (Should not obstruct

Data)
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5. Labeled Axes: Label your axes with the name of the variable, its unit and the scale

(Ticks and Numbers). There are multiple ways of including the units, however we

suggest you use the ISO standard variable_name /unit.

6. Readability: When drawing graphs by hand, use a Ruler.

15.4.2 Logarithmic Plots

Logarithmic and Semi-Logarithmic Plots are useful tool to identify special types of re-

lationship between variables. They are characterized by one or both axis being scaled

logarithmically instead of linearly. For a logarithmic plot, this means that monomials of

the form y = axk appear as straight lines with slope k. This can be seen by applying a
log function to both sides of the equation:

log (y) = log (axk) = log (a) + k log (x) (15.23)

In a similar fashion, we can see that relations of the form y = λaγx appear as a line with
slope γ on a semi-log plot:

loga (y) = loga (λa
γx) = γx+ loga (λ) (15.24)

Or using a base 10 log:

log y = log (λaγx) = (γ log (a))x+ log (λ) (15.25)
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Figure 15.1: Different Monomials on a Logarithmic Plot.

Figure 15.2: Different Exponentials on a Semi-Logarithmic Plot.
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A Further derivations

A.1 Derivations of Statistics

A.1.1 Alternative formulations for Variance and Covariance

By applying the sum to individual elements and using
∑n

i=1 xi = nx̄, alternative formu-
lations can be found that are sometimes more comfortable to apply

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2

=
1

n− 1

n∑
i=1

(
x2i − 2xix̄+ x̄2

)
=

1

n− 1

(
n∑

i=1

x2i − 2x̄
n∑

i=1

xi +
n∑

i=1

x̄2

)

=
1

n− 1

(
n∑

i=1

x2i − 2nx̄2 + nx̄2

)

=
1

n− 1

(
n∑

i=1

x2i − nx̄2

)

Cov(X,Y ) =
1

n− 1

n∑
i=1

(xi − x̄) (yi − ȳ)

=
1

n− 1

n∑
i=1

(xiyi − xiȳ − x̄yi + x̄ȳ)

=
1

n− 1

(
n∑

i=1

xiyi − ȳ

n∑
i=1

xi − x̄

n∑
i=1

yi +

n∑
i=1

x̄ȳ

)

=
1

n− 1

(
n∑

i=1

xiyi − nx̄ȳ − nȳx̄+ nx̄ȳ

)

=
1

n− 1

(
n∑

i=1

xiyi − nx̄ȳ

)

A.1.2 Derivation of the Least Squares Coefficients

We want to generate a linear regression to predict y for a given x. We will call ŷ = a+bx
our predictor for y. We define the sum of square errors as a function of the coefficients
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a and b:

S(a, b) =

n∑
i=1

(yi − ŷ)2

=

n∑
i=1

(yi − a− bxi)
2

Since we want to find a and b that minimize this function, we will set the partial derivatives
with respect to a and b equal to zero and solve for a and b.

∂S

∂a
= −2

n∑
i=1

(yi − a− bxi) = 0 (A.1)

∂S

∂b
= −2

n∑
i=1

(xi(yi − a− bxi)) = 0 (A.2)

We will start by simplifying the sum in (26):

n∑
i=1

(yi − a− bxi) =

n∑
i=1

yi −
n∑

i=1

a− b

n∑
i=1

xi (A.3)

= nȳ − na− bnx̄ (A.4)

In (26):

−2(nȳ − na− bnx̄) = 0 (A.5)

ȳ − a− bx̄ = 0 (A.6)

a = ȳ − bx̄ (A.7)
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We will use this expression for a and simplify the sum in (27):

n∑
i=1

(xi(yi − a− bxi)) =

n∑
i=1

(xi(yi − ȳ + bx̄− bxi)) (A.8)

=

n∑
i=1

xiyi −
n∑

i=1

xiȳ +

n∑
i=1

xibx̄−
n∑

i=1

bx2i (A.9)

=

n∑
i=1

xiyi − ȳ

n∑
i=1

xi + bx̄

n∑
i=1

xi − b

n∑
i=1

x2i (A.10)

=

n∑
i=1

xiyi − nx̄ȳ + b

(
nx̄2 −

n∑
i=1

x2i

)
(A.11)

= (n− 1) · Cov(X,Y )− b(n− 1) · σ2
x (A.12)

In (27):

−2
(
(n− 1) · Cov(X,Y )− b(n− 1) · σ2

x

)
= 0 (A.13)

Cov(X,Y )− bσ2
x = 0 (A.14)

b =
Cov(X,Y )

σ2
x

(A.15)
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B Tables

B.1 List of physical constants (in SI units)

Name Symbol Value Unit

Atomic mass unit u = 1.660 · 10−27 kg

Atomic mass unit uc2 = 931.49 MeV

Avogadro constant NA = 6.022 · 10−23 mol−1

Bohr radius a0 = 5.2917 · 10−11 m

Boltzmann constant kB = 1.3806 · 10−23 J·K−1

Elementary charge e = 1.602 · 10−19 C

Vacuum permittivity /

electric constant
ε0 = 8.8541 · 10−12 A·s·V−1·m−1

Gravitational acceleration

(average)
g = 9.807 m·s−2

Universal Gas constant R = 8.3145 J·mol−1·K−1

Gravitational constant G = 6.673 · 10−11 m3·kg−1·s−2

Speed of light c = 2.9979 · 108 m·s−1

Vacuum permeability /

magnetic constant
µ0 = 4π · 10−7 V·s·A−1·m−1

Normal pressure p0 = 101324 Pa

Planck constant h = 6.626 · 10−34 J·s
Mass of electron me = 9.109 · 10−31 kg

Mass of neutron mn = 1.675 · 10−27 kg

Mass of proton mp = 1.673 · 10−27 kg

Rydberg constant RH = 1.097 · 107 m−1

Stefan-Boltzmann con-

stant
σ = 5.670 · 10−8 W2·m−4·K−1

Wave impedance of vac-

uum
Z0 = 376.7 Ω

Table B.1: List of Phyiscal constants [29]
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B.2. LIST OF NAMED, SI DERIVED UNITS

B.2 List of named, SI derived units

Unit Symbol Quantity Equivalents SI Equivalent

hertz Hz frequency 1/s s-1

radian rad angle m/m 1

newton N force kg·m/s2 kg·m·s-2

pascal Pa pressure, stress N/m2 kg·m-1·s-2

joule J energy, work, heat N·m, W·s kg·m2·s-2

watt W power J/s, V·A kg·m2·s-3

coulomb C electric charge F·V A·s
volt V voltage W/A, J/C kg·m2·s-3·A-1

farad F capacitance C/V kg-1·m-2·s4·A2

ohm Ω resistance, impedance 1/S, V/A kg·m2·s-3·A-2

siemens S conductance 1/Ω, A/V kg-1·m-2·s3·A2

tesla T magnetic field strength V·s/m2 kg·s-2·A-1

henry H inductance V·s/A, Ω·s kg·m2·s-2·A-2

Table B.2: List of named, SI derived units

B.3 List of material constants
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T
a
b
le
s

Density Speed of sound Linear expansion coefficient Specific heat capacity Melting temperature

Name ρ/kg·m−3 cs/m·s−1 α/K−1 C/J·kg−1·K−1 Tm/ °C

Aluminium 2700 5240 23.8 · 10−6 896 660.1

Lead 11340 1250 31.3 · 10−6 129 327.4

Iron 7860 5170 12.0 · 10−6 450 1535

Gold 19290 3240 14.3 · 10−6 129 1063

Copper 8920 3900 16.8 · 10−6 383 1083

Brass 8470 18 · 10−6 380 905

Silver 10500 19.7 · 10−6 235 860.8

Heat conductivity Specific electric resistance (at 20°C) Magnetic permeability

Name λ/W·m−1·K−1 ρe/Ω·m−1 µr

Aluminium 239 2.82 · 10−8 1 + 2.1 · 10−5

Lead 34.8 2.2 · 10−7 diamagnetic

Iron 80 1 · 10−7 ≈ 5800

Gold 312 2.2 · 10−8 1− 3.4 · 10−5

Copper 390 1.7 · 10−8 1− 6.4 · 10−6

Brass 79 7.8 · 10−8

Silver 428 1.59 · 10−8

Table B.3: Properties of different metals[62].
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Density Speed of sound Volume expansion coefficient Specific heat capacity Melting temperature

Name ρ/kg·m−3 cs/m·s−1 α/K−1 C/J·kg−1·K−1 Tm/°C

Acetone 792 1190 1.49 · 10−3 2160 −94.86

Benzol 879 1326 .1.23 · 10−3 1725 5.53

Ethanol 789 1170 1.1 · 10−3 2430 −114.5

Oil ≈ 900

Mercury 13546 1430 1.84 · 10−4 139 −38.87

Water 998 1483 2.07 · 10−4 4182 0

Boiling temperature Enthalpy of fusion Enthalpy of vaporization

Name Tb/°C Lm/J·kg−1 Lb/J·kg−1

Acetone 56.25 9.8 · 104 5.25 · 105

Benzol 80.1 1.28 · 105 3.94 · 105

Ethanol 78.33 1.08 · 105 8.4 · 105

Oil

Mercury 356.58 1.18 · 104 2.85 · 105

Water 100 3.338 · 105 2.256 · 106

Table B.4: Properties of different fluids[62].
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Density
Speed of

sound

Molare heat capacity

(p constant)
Melting

temperature

Boiling tem-

perature

Van-der-Waals

constant a
Van-der-Waals

constant b

Name ρ/kg·m−3 cs/m·s−1 Cp/joule/mol/K Tm/°C Tb/°C a/N·m4·mol−2 b/m3·mol−1

Argon 1.784 - 20.9 −77.7 −33.4 0.425 3.73 · 10−5

Helium 0.1785 1005 20.9 - −268.94 0.0034 2.36 · 10−5

Carbondioxide 1.977 268 36.8 - −78.45 0.366 4.28 · 10−5

Air 1.293 344 29.1 - −191.4 0.135 3.65 · 10−5

Methan 0.717 445 35.6 - −191.4 0.229 4.28 · 10−5

Neon 0.9 - 20.8 −248.61 −245.06 0.0217 1.74 · 10−5

Oxygen 1.429 326 29.3 −218.79 −182.97 0.138 3.17 · 10−5

Nitrogen 1.25 1310 29.1 −210.0 −195.82 0.137 3.87 · 10−5

Water vapour - - 33.6 0 100 0.553 3.04 · 10−5

Hydrogen 0.0889 1310 28.9 −259.2 −252.77 0.0248 2.66 · 10−5

Table B.5: Properties of different gases[62].
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